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Abstract

Variational Bayesian methods have met a huge success over the last years, and remain
a very active research topic. However, little is known on the convergence properties of
the underlying algorithm. We first focus on the conditions required to get the almost-
sure convergence of the Variational Auto-Encoders algorithm. To that end, we use the
mathematical arsenal from the stochastic approximation theory. In a second part, we
perform numerical experiments on simple Variational Bayesian models to understand
their behavior and what kind of errors they make. Then we propose the design of a
new variant of Auto-Encoders based on Markov Chain Monte-Carlo methods and the
use of the problem’s information geometry.
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1 Introduction

My internship at Inria was a chance to wrap up my academic coursework by diving into the very active
research topic of Variational Inference. I got to experience the dynamic walking pace of the machine
learning academic community. It gave me the opportunity to work on theoretical as well as concrete
applied questions. The initial topic of the internship was a broad question: can we understand how
Variational Auto-Encoders methods work? In a first part of my internship, I tried to figure out what
kind of mathematical results to expect on the convergence of the original numerical algorithms. This
led me to explore the stochastic approximation literature. In a second part, I focused on designing
variations on the original numerical procedure which would provide better approximation properties.
Following this idea, I explored several directions ranging from Sequential Monte-Carlo to Hamiltonian
Monte-Carlo. The current report first presents the general framework of Variational Inference and
Variational Auto-Encoders. The next parts present the result of the corresponding periods of my
internship, along with the related relevant results in the corresponding academic domains. A non-
negligible proportion of the report is devoted to explaining currently existing techniques. I tried to
keep it as concise as possible, however this structure is necessary to understand my research activity,
and reflects the time I spent investigating the literature of several active research topics.

2 Understanding Variational Bayesian Methods

In this section, we present the main tools which we will be focusing on in the report. We quickly intro-
duce Bayesian Inference and Variational Inference to expose the Variational Auto-Encoders algorithm.

2.1 Bayesian methodology

When designing a parametric statistical model, one must choose between using deterministic or random
hidden parameters. The first choice corresponds to the field of frequentist statistics and the second one
to the field of Bayesian statistics. Depending on the context, both methods are expected to produce
similar result but may differ when is comes to the quantification of the uncertainty.

Given parameters θ and observations x, a Bayesian model [4] consists in a prior distribution p(θ),
which reflects the information a priori on the value of the parameters, and a likelihood function
p(x | θ) which gives the probability of an observation given the parameter value. The general objective
in Bayesian inference is to retrieve the posterior distribution of θ given x using Bayes’ rule:

p(θ | x) =
p(x | θ)p(θ)

p(x)

The posterior distribution is often not explicit, or hard to sample from. In those cases, one must
resort to approximate the posterior distribution. Two main categories of methods exist:

• Markov Chain Monte Carlo (MCMC) methods produce a series of (non-independent) samples
which converges ergodically toward the posterior distribution.

• Variational Inference looks for the best approximation of the posterior distribution among a
family of simpler parametric distributions.

We will focus on the second method.

2.2 Variational Inference

2.2.1 Inference as an optimization problem

As described above, Variational Inference (VI) [27] is a general procedure which aims at finding the
best approximation of a probability distribution among a variational family of simpler distributions.
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Formally, given a posterior distribution of interest p(θ | x) and a family of distributions Q = {q(θ)},
VI solves the following optimization problem:

inf
q∈Q

KL(q(θ) || p(θ | x))

where KL designates the Kullback-Leibler divergence (KLD):

KL(q(θ) || p(θ | x)) =

∫
q(θ) log

(
q(θ)

p(θ | x)

)
dθ

The strength of Variational Inference is to turn the initial (complex) posterior inference problem
into an optimization problem, which can be addressed with a wide variety of algorithms. Recently, the
need for large scale computations has led to the development of Stochastic Variational Inference
[26], which brings the power of Stochastic Gradient Descent (SGD) to Variational Inference.

The idea of Variational Inference comes from a lower bound on the log-likelihood:

log p(x) = log

∫
p(x, θ) dθ

= log

∫
p(x, θ)

q(θ)
q(θ) dθ

≥
∫

log

(
p(x, θ)

q(θ)

)
q(θ) dθ (Jensen’s inequality)

≥ log p(x)−KL(q(θ) || p(θ | x))

This bound is called the Evidence Lower BOund (ELBO). Since the term log p(x) does not
depend on q, minimizing the KL divergence is equivalent to maximizing the ELBO. Many branches of
VI consist in proposing variations of this bound [1, 25, 6].

2.2.2 Scaling up with amortized inference

In statistical modeling, the dimension of the hidden parameters often varies with the number of ob-
servations: typically we observe N variables xi and want to retrieve the posterior distribution of
N corresponding latent variables zi. The independence between the experiments gives a separable
likelihood:

p(x, z) =

N∏
i=1

p(xi | zi)p(zi)

When dealing with a large number of observations, the dimension of the hidden variables thus rises
accordingly. If every variational distribution q(zi | xi) has to be optimized, the variational family

{q(z | x) =
∏N
i=1 q(zi | xi)} rapidly becomes intractably large.

This issued is addressed with the notion of amortization. Amortized Variational Inference [52]
consists in parameterizing all the posterior distributions q(zi | xi) with a common parameter θ. In
other words, the variational distribution of zi given xi is a (known) function of xi and θ.

Example Given a complex model p(xi | zi), a common practice consists in approximating the
posterior distribution p(zi | xi) with a Gaussian distribution q(zi | xi) = N (µi,Σi). In this situation,
standard VI consists in finding the best means and covariances µ1, ..., µN ,Σ1, ...,ΣN for each data
point. On the contrary, Amortized VI would consist in considering the means and covariances as
explicit functions of xi and some parameter θ: q(zi | xi) = N (µθ(xi),Σθ(xi)). The function µ and Σ
are often defined as neural networks.

Amortized VI speeds up dramatically the inference procedure, and allows furthermore to generalize
inference to new observations by using the same common parameter θ. In turn, it introduces another
source of error which, as we will see later, also needs to be taken into account.
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2.3 Variational Auto-Encoders

2.3.1 Idea

Variational Auto-Encoders (VAE), also called Variational Bayes (VB) is a method introduced
in 2013 by Kingma and Welling [31]. Since then, they have met a considerable success as a mean to
use Bayesian uncertainty in auto-encoding models.

Consider a model p(x, z, θ) with latent variables (z, θ), where the hidden parameter θ is common
to all observations. In this setting, VI would consist in finding an approximation of p(z, θ | x). The
idea of VAEs is to consider θ deterministic and to learn it along with the variational distribution.

In other words, VI deals with the following optimization problem:

max
ϕ

log p(x)−KL(qϕ(z, θ | x) || p(z, θ | x)) (VI)

whereas VAE maximizes the following objective:

max
θ,ϕ

log pθ(x)−KL(qϕ(z | x) || pθ(z | x)) (VAE)

Both methods maximize the ELBO, but the VAE is maximizes jointly in (θ, ϕ), which give their name
to Variational Auto-Encoders. This method indeed outputs both a encoding distribution qϕ(z | x),
which allows to retrieve the hidden latent variable (the ”code”) from observation, and an decoding
distribution pθ(x | z), which gives the distribution of the observation x given the latent variable.

Remark 1. The term Variational Bayes is used when the distribution p and q are not specified. VAEs
refer more specifically to neural network-related models.

2.3.2 Algorithm

It is worth noticing that performing simple maximum likelihood estimation (MLE) to find the best
parameter θ would have been impossible in that scenario: the classical EM algorithm [15] requires
an explicit expression of the posterior distribution pθ(z | x). On the contrary, simple rewrites of the
VAE’s objective using the properties of the natural logarithm allows for SGD:

ELBO(θ, ϕ, x) = log pθ(x)−KL(qϕ(z | x) || pθ(z | x))

= Eqϕ(z|x) [log pθ(x | z)]−KL(qϕ(z | x) || log pθ(z))

= Eqϕ(z|x) [pθ(x, z)− log q(z | x)]

This expression gives a first lead toward a SGD-based algorithm: indeed we get an expectation of
known quantities. However, this expectation depends on the parameter ϕ hence the gradient of the
expectation is not equal to the expectation of the gradient. To overcome this hurdle, the authors of [31]
introduce the reparameterization trick. It simply consists in writing the qϕ(z | x) distribution as
a transformation of a non-parametric distribution. For instance, if qϕ(z | x) = N (µϕ(x),Σϕ(x)), one

can write z = gϕ(ε, x) with ε ∼ N (0, I) and gϕ(ε, x) = µϕ(x) +
√

Σϕ(x)ε. With this trick, the VAE’s
objective is rewritten as the following formula, which is amenable to Stochastic Gradient Descent. The
numerical procedure is summarized in algorithm 1.

ELBO(θ, ϕ, x) = Eε [pθ(x, gϕ(ε, x))− log q(gϕ(ε, x) | x)]

VAEs perform Bayesian inference while harnessing the power of neural networks and stochastic
optimization. Their framework is very flexible and lends itself to adaptations in various fields, from
image generation to shape auto-encoding [3]. They have met a considerable success and still are a
very active research topic. The current research mostly focuses on improving the model’s architecture
[6, 25, 36, 48].
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Data: N observations x
while not converged do

Sample mini-batch x1, ..., xB ;
Sample ε1, ..., εB ∼ N (0, I) ;

Compute the estimate ÊLBO(θ, ϕ, x1:B , ε1:B) ;

Compute the gradient of ÊLBO wrt. (θ, ϕ) ;
Update (θ, ϕ) (SGD, Adam, RMSprop, . . . ) ;

end
Result: θ and ϕ

Algorithm 1: The original VAE algorithm from [31]

3 Theoretical study of Variational Auto-Encoders

3.1 State of the art and objectives

3.1.1 Existing theoretical results on Variational Bayes

Only a few recent articles tackle theoretical issues about Variational Bayes. Furthermore, they rather
focus on the classical VI setting, where θ is a random variable to be determined by posterior inference.

In 2015, [29] proved the convergence of a proximal variant of SVI to a local minimum and gave a
convergence rate (depending on the descent step sizes).

In 2018, two new results were proved on the consistency of the numerical algorithm, that is to
say its convergence when the number of samples tends to +∞. In [50], Wang and Blei prove that,
when the number of sample increases, the variational posterior distribution of the latent variable θ
converges normally toward the value of the true hidden parameter θ∗. This result is qualified as a
frequentist consistency similar to the Bernstein-von-Mises theorem, as it guarantees the distributional
convergence of a Bayesian algorithm, thereby proving its correctness from a frequentist point of view.

In a series of articles [11, 10], Chérief-Abdellatif proves that using a penalized version of the ELBO
as a criterion for model selection results in a consistent numerical procedure: the posterior distribution
in the selected model converges in expectation toward the true distribution as the number of samples
tends to +∞.

To the best of our knowledge, no theoretical study has yet been conducted on the proper VAE
algorithm. While a great research effort is being produced in the field of VAEs, few is known about
the theoretical aspect of the algorithm. This observation is more generally true in most areas where
deep networks are involved: their structure makes it impossible or very difficult to prove strong results.

3.1.2 Motivation: the example of IWAEs

The original goal of my internship was to understand the overall way VAEs work. This question
arises when considering the objective’s structure compared with classical VI: the second one has a
nice interpretation in terms of Kullback-Leibler divergence. We were thus interested to see what kind
of mathematical behavior to expect when maximizing the ELBO not only in q but also in p: this is
neither MLE nor VI.

The complexity of this algorithm illustrated by a recent research result [45], which we explain in
this section. We can first notice that objective is structured as a tradeoff:

• The log pθ(x) term favors the correct maximum likelihood retrieval

• The Kullback-Leibler divergence guarantees that qϕ(z | x) is close to pθ(z | x).

Ideally, if the variational family is large enough, we will get a KLD close to zero and thus retrieve the
correct MLE for p.
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This might cause the impression that, if the ELBO gets tighter (closer to log pθ(x)), the algo-
rithm will improve accordingly. This idea drives Importance Weighted Auto-Encoders (IWAE, [6]), an
extension of VAEs. IWAEs maximize the following ELBO:

max
θ,ϕ
LK(θ, ϕ, x) = Eqϕ(z|x)

[
log

1

k

K∑
k=1

pθ(x, zk)

qϕ(zk | x)

]
(IWAE)

When taking K = 1, we find the VAE’s objective. Greater values of K simulate more samples z
per observation, which are used in a way similar to importance sampling. The ELBO of IWAEs gets
tighter as K increases:

L1 ≤ L2 ≤ ... ≤ LK −−−−−→
K→+∞

log pθ(x)

The authors in [6] show that increasing K encourages the hidden variable to occupy more dimensions
of the latent space, thus augmenting the model’s representation power.

However, a recent study [45] shows that the intuition behind IWAE (tighter ELBO = better per-
formance) should be questioned more thoroughly. The authors compute the order of magnitude of

the signal-to-noise ratio (SNR) of the empirical ELBO’s gradient. They find that the SNR of ∇θL̂K
increases with O(

√
K) (which is good), but that the SNR of ∇ϕL̂K is in O(1/

√
K). In other words,

when the ELBO gets tighter, the gradient estimate in ϕ is essentially noise, which makes it useless for
training.

3.1.3 What can we hope to get?

The example of IWAEs shows that the behavior of VAEs is not as intuitive as it may appear. Even
though we obviously do not pretend nor hope to propose a complete rigorous theory, we found inter-
esting to at least try to determine what kind of results classical theories allow to get in this context.

An important obstacle is the presence of neural networks in the problem. These functions satisfy
very few hypothesis, being neither Lipschitz continuous nor convex nor bounded. Typically, it would
be unreasonable to expect:

• An explicit expression of the solution: neural networks are complex, non invertible trans-
formations. It is unrealistic to hope for an explicit expression of the best parameters (θ, ϕ).
Similarly, we should not expect to get an explicit relationship between p and q at the optimum.

• Convergence toward a global maximum: as often in non-convex optimization, the conver-
gence often happens only in local minima.

• A good convergence rate: in a non-convex setting, we can not hope for a linear convergence.

With those limitations in mind, we focused on trying to prove the convergence of VAEs toward
a critical point of the objective function (and possibly a local maximum). This section explains our
main attempts and what they resulted in.

3.2 First approach: a variant of SAEM algorithm?

Our first idea was to derive properties of the VAE algorithm by considering it as a variant of the SAEM
algorithm, which is a variant of the EM algorithm. We briefly recall these methods.

EM algorithm Consider a model pθ(x, z) where only x is observed. We want to retrieve the MLE

estimator θ̂ = argmaxθ pθ(x). The EM algorithm is an ascent algorithm which consists in two steps.
At time n, we first compute a function Q(θ | θn) such that Q(θ | θn) ≤ log pθ(x) and Q(θn | θn) =
log pθn(x). This function is defined by an expectation:

Q(θ | θn) = Epθn (z|x) [log pθ(x, z)]

8



Next, we get θn+1 = argmaxθ Q(θ | θn). By definition of Q, it is guaranteed that the log-likelihood
is increases at each iteration. The process is summarized in algorithm 2. Since it was introduced in
1977, many theoretical results were proved on the EM algorithm. It is known that, for a wide class of
problems, the algorithm converges toward a local maximum of the objective function for exponential
families. The algorithm has become popular and numerous variants were developed to make it relevant
in various contexts [7, 14, 28, 32, 33, 43, 44].

Data: Observation x, initial value θ0
while not converged do

E-step: compute the expectation Q(θ | θn) = Epθn (z|x) [log pθ(x, z)] ;

M-step: maximize Q in θ to get θn+1 = argmaxθ Q(θ | θn) ;

end
Result: final θN

Algorithm 2: The EM algorithm [15]

SAEM algorithm The Stochastic Approximation Expectation Maximization [14] was introduced
in 1999 as a mean to perform maximum likelihood when the expectation computation in the EM
algorithm is intractable, but one can still generate samples from the distribution pθn(z | x). The idea
is to approximate the Q function using by generating one sample per step and averaging the empirical
versions of Q we thus obtain:

Qn+1(θ) = (1− γn)Qn(θ) + γn log pθ(x, zn)

The algorithm is particularly efficient in the setting of exponential families. In this case, we have
log p(x, z) = 〈S(x, z), φ(θ)〉+ φ(θ). We only need to save the updated value of the exhaustive statistic
S and not the entire Q functions:

Sn = (1− γn)Sn−1 + γnS(x, zn), Qn(θ) = 〈Sn, φ(θ)〉+ ψ(θ)

The procedure is summarized in algorithm 3.

Data: Observation x, initial value θ0
while not converged do

E-step:
a) Simulate zn ∼ pθn(z | x) ;
b) Update Sn+1 = (1− γn)Sn + γnS(x, zn) ;
M-step: compute θn+1 = argmaxθ Qn+1(θ) = argmaxθ〈Sn, φ(θ)〉+ ψ(θ) ;

end
Result: final θN

Algorithm 3: The SAEM algorithm [14]

Similarity between VAE and SAEM Our initial intuition was about the resemblance between
the SAEM algorithm and VAEs. Indeed, the ELBO is an expectation over qϕ(z | x) which, in an ideal
scenario, is supposed to be very close to pθ(z | x). Hence each step of the algorithm increases the value
of a function similar to the expectation of a log-likelihood over the posterior distribution. Two main
differences were to consider:

• The expectation is taken over a distribution which is not the true posterior distribution

• The SAEM algorithm makes a full maximization at each time step, whereas the VAE is a gradient
ascent algorithm.
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The second item would probably not be an issue, since other (provably convergent) variants of the
EM algorithm exist, where the maximization is not tractable and a gradient step is performed instead.
On the contrary, the first item surprisingly turned out to break the analogy when it came to adapting
the proof of convergence of the SAEM algorithm.

Essentially, the log-likelihood function `(θ) = log pθ(x) verifies a nice gradient equality:

∇θ`(θ) = ∇θ log pθ(x)

= ∇θ log

∫
pθ(x, z) dz

=

∫
∇θpθ(x, z) dz∫
pθ(x, z) dz

=

∫
1

pθ(x)
pθ(x, z)∇θ log pθ(x, z) dz

= Epθ(z|x)[∇θ log pθ(x, z)]

This equation allows the authors to smoothly overcome some technical hurdles. This formula does not
hold true anymore when using the objective function of VAEs ˆ̀(θ, ϕ) = Eqϕ(z|x)[log pθ(x, z)− log qϕ(z |
x)]. The cause is the absence of connection between the p and q distributions.

Despite the proof not lending itself to a direct adaptation (which would have been suspiciously
easy), some important insights can be drawn from its overall structure. First, the core of the proof is
to apply a powerful theorem from stochastic approximation theory (SA). This theory was designed
to study the behavior of deterministic and stochastic approximation algorithms like the Robbins-Monro
procedure, and turned out to be particularly well suited for this application. Second, the hypotheses
of the theorem and their role in the proof helped me understand what could be the limitations in our
VAE setting: crucially, some assumptions on the boundedness of the parameter or the growth of the
functions will be required.

3.3 Second approach: Stochastic Approximation theory

Even though the apparent connection between the VAE and the SAEM ended up not working, it
made it clear that the underlying theory to be used in these common frameworks is that of stochastic
approximation. We first briefly present this framework, as well as some important related results.
Then we consider the VAE algorithm under this angle and derive a theorem with hypotheses similar
to those of the SGD algorithm.

3.3.1 Main theorem

This subsection mainly takes stock on the comprehensive review on stochastic approximation (SA) on
the topic from Delyon [13]. His approach considers first deterministic algorithm and proves almost-sure
results by applying deterministic theorems point-wise.

The algorithm we consider in this setting is defined by the recursive equation:

sn = sn−1 + γnh(sn−1) + γnen + γnrn.

sn ∈ X is the parameter which is updated at each step, γ is the step size or learning rate, en and rn
are two (deterministic) error sources. h is the update: in the VAE setting it will be the gradient of
the ELBO. The goal is to find conditions under which h(sn)→ 0.

First, two canonical assumptions ensure the convergence of the algorithm.

Definition 1 (Hypothesis (A)). The algorithm satisfies the hypothesis if the function h is continuous
over X and there exists a C1 Lyapunov function V : X → R such that:

• F (s) = 〈∇V (s), h(s)〉 ≤ 0
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• For S = {s | 〈∇V (s), h(s)〉 = 0}, we have Int(V (S )) = ∅

Definition 2 (A-stability). The algorithm is A-stable if sn stays in a compact set of X ,
∑
n γnen

converges and rn → 0.

These two assumption grant the convergence toward S :

Theorem 1. If hypothesis (A) is satisfied and the algorithm is A-stable, then d(sn,S )→ 0. Further-
more, if S is finite, then sn converges toward an element or S .

Note that we don’t know for sure that h(sn) → 0. We will see later that this problem can be
overcome when it comes to applying the theorem. These two main conditions (existence of a Lyapunov
function and boundedness of sn) are the core SA hypotheses, and the theoretical challenge thus consists
in weakening those assumptions into more flexible results.

Remark 2. The definition of the Lyapunov function may look opaque at the first glance. It has a
nice interpretation in the continuous limit: when γn = γ → 0, let aside the error terms, the variable
sn becomes a time continuous function satisfying a first-order differential equation:

sn − sn−1
γ

= h(sn) −−−→
γ→0

ds

dt
= h(st)

And the definition of V translates into:

dV (st)

dt
= 〈V (st), h(st)〉 ≤ 0

Hence the Lyapunov function should be interpreted as a function which is minimized along the tra-
jectory of the algorithm. This consideration will prove useful when it comes to exhibiting such a
function.

3.3.2 Chen’s reprojection method

In order to get rid of the compacity assumption, the reprojection method is introduced in [13]. This
method consists in controlling the sequence sn, and restarting from increasingly large random starting
points. Consider an increasing sequence of compacts Kn covering X . The method is described in al-
gorithm 4. It is illustrated in fig. 1 with a spiral, which allows to visually understand the reprojection.
This example does of course not represent a stochastic approximation process, which would tend to
slow down and converge toward the set of stationary points.

Data: Starting point s0, first compact index c0
while not converged do

Update sn → sn+1 ;
if sn+1 ⊂ Kcn then

cn+1 = cn ;
else

cn+1 = cn + 1 ;
sn+1 ∼ U(K0) ;

end

end
Result: sN

Algorithm 4: Chen’s reprojection method

At the first glance, it seems that reprojections heavily affect the sequence’s behavior, which ques-
tions the convergence the algorithm. One thus might wonder about the purpose of the reprojections.
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K0

K1

K2

Figure 1: A spiral starting from the center and reprojected on a increasing series of circles. The
reprojections are represented by red arrows.

It turns out that under certain additional hypotheses, the reprojections only happen a finite amount
of times. This means that the sequence asymptotically stays in some (random) compact set, granting
the boundedness we need to prove the convergence. We state below the extra hypotheses which grant
the A-stability.

Definition 3 (Hypothesis (B)). The algorithm satisfies the hypothesis if the function h is continuous
over X and there exists a C1 Lyapunov function V : X → R and a compact K such that:

• F (s) = 〈∇V (s), h(s)〉 < 0 if x /∈ K

• V (s)→ +∞ if s→ ∂X or |x| → +∞.

Theorem 2. Consider the reprojected algorithm. If hypothesis (B) is satisfied and if, for all M ∈ N,∑
n

γnen1V (sn−1)≤M converges and lim
n
|rn|1V (sn−1)≤M = 0

then the algorithm is A-stable (and the reprojections only occur a finite amount of times).

Remark 3. In this version of the theorem, we trade the boundedness of the sequence (sn) against
stronger properties on the Lyapunov function.

3.4 Application to VAEs

In the interest of brevity, we don’t mention the theorem on stochastic approximation from [13] for the
case where the error source (en, rn) is random because it does not apply in our situation. Indeed it
assumes that the set of solutions S = {s | h(s) = 0} is finite, which is not the case as we will see.
In this subsection, we will use the tools previously introduced to prove the following theorem:
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Theorem 3. Consider the VAE algorithm. We assume that pθ and qϕ are Gaussian distributions
parameterized by neural networks with upper bounded covariance matrices: Σθ(z) � εI, Σϕ(x) � εI.
The network’s activation function is supposed to be smooth and Lipschitz. Then, if the networks’
parameters (θ, ϕ) stay bounded, the stochastic gradient descent for VAEs converges with probability
one to a critical point of the ELBO.

3.4.1 Connection between SA and VAE

In the VAE setting, our parameter is s = (θ, ϕ) and we consider the ELBO over a dataset (x1, . . . , xN ):

L(θ, ϕ) =
1

N

N∑
i=1

Eqϕ(z|xi)[log pθ(xi, z)− log qϕ(z | xi)]

The objective is to find s such that ∇L(θ, ϕ) = 0, hence we will use h(s) = ∇L(s). Since h depends
on the action of neural networks, which can be constant in some regions of the parameters space, it
is clear that the set of critical points may be infinite and even unbounded. The traditional gradient
descent algorithm writes

sn+1 = sn + γnh(sn) + γnen

with en = ∇L̂(sn) − h(sn) the difference between the gradient of the empirical ELBO and the true
gradient, and rn = 0. As described in algorithm 1, the empirical ELBO is computed on a mini-batch
with one sample of z using the reparameterization trick: z = gϕ(ε, x), ε ∼ P (ε). In order to be
able to do concrete mathematical computations, we assume that pθ(x | z) and qϕ(z | x) are Gaussian
distributions parameterized by neural networks. We also define a Gaussian prior for z: pθ(z) = N (0, I),
which is a classical choice for continuous latent variables.

pθ(x | z) = Nx(µθ(z),Σθ(z)), qϕ(z | x) = Nx(µϕ(x),Σϕ(x))

The functions µ and Σ are considered multi-layer perceptrons. Notice that our reasoning would
also work for general feed-forward networks like convolutional networks. Besides, in order to get
symmetric positive-definite covariance matrices, the matrix Σ is often parameterized as Σ = U tU
with U a triangular matrix with non-zero diagonal coefficients whose coefficients are produced by a
neural network. We will restrict ourselves to the case where the covariances are diagonal matrices.
This assumption allows for significant computations alleviation. It is also often used numerically to
produce faster codes [17], thus avoiding evaluation - and backpropagation - of matrix determinants.
Furthermore, for theoretical convenience purpose, we assume that the activation function σact used in
the networks is Lipschitz continuous, and differentiable a number of times greater than dim(x) and
dim(z).
In the next section, we derive brutal yet useful bounds on neural networks and the loss function. In
the two following subsections, we try two different Lyapunov functions and derive related convergence
theorems.

Remark 4. A paper from Monnez [39] proves a very similar result on the almost sure convergence
of SGD, but it makes strong regularity assumptions on the objective function. In our neural-network
based context, those conditions are not met.

3.4.2 On the growth of neural network functions

As we went through the computations, it turned out that bounds on the growth of neural network
functions could help in various ways. By using naive upper bounds, we derived a bound on neural
network outputs and their gradient with respect to the network’s parameters. All the results are proved
in appendix A.

First we bound the growth of the neural network itself:
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Proposition 1. Let fθ(x) a neural network with L layers with no activation on the final layer, with
k-Lipschitz activation function σact. Then we have |fθ(x)| ≤ C(1 + ‖θ‖)L(1 + ‖x‖), where C is a
constant depending on L, k and σact(0).

This bound can be used to bound the growth of the ELBO L. It appears in the computation that,
without further hypothesis, the covariance matrix can get non-invertible arbitrarily fast in any portion
of the space. In order to avoid this undesired behavior, we impose that the covariance stays uniformly
positive: ∃ε,∀θ, ϕ, z, x,Σθ(z) � εI and Σϕ(x) � εI. This condition can be numerically implemented
very easily with the parameterization Σ = U tU by adding εI to the positive diagonal coefficients
(and making them positive). We now call L the maximum number of layers in any considered neural
network.

Proposition 2. Under the previous assumptions, there exists a constant C depending on L, k, σact(0),
N, dim z and the norms ‖xi‖ such that |L(θ, ϕ)| ≤ C(1 + ‖θ‖)2L(1 + ‖ϕ‖)2L.

Next, we derived an upper bound on the growth of the gradient of a neural network output with
respect to its parameters:

Proposition 3. Let fθ a neural network with L layers without activation on the last layer, σact a
smooth and k-Lipschitz activation function. Then there exists a constant C depending on L, k and d
such that |∂θ[fθ(x)]| ≤ C(1 + ‖θ‖)2L(1 + ‖x‖) and |∂x[fθ(x)]| ≤ C(1 + ‖θ‖)L.

We used this bound as well as the previous ones to derive a bound on the gradient of the ELBO:

Proposition 4. Under the previous hypotheses, there exists a constant C depending on L, k, σact(0),
N, dim z and the norms ‖xi‖ such that |∇L(θ, ϕ)| ≤ C(1 + ‖θ‖)4L(1 + ‖ϕ‖)4L.

Remark 5. The bounds above are certainly not tight. For flat and shallow networks they produce
very bad estimates. At a given number of parameters, the worst case is a very deep network with
one neuron per layer: in this case the network’s output function may have a polynomial growth with
maximal degree. Perhaps smarter proof techniques would have allowed to replace the 4L exponent
with L. However a point we make here is that, whatever the network’s architecture, there can be a
direction in the parameters space where the objective function and its gradient grow like a polynomial.

3.4.3 First Lyapunov function: bounded case

As for classical gradient descent, the recommended Lyapunov function for stochastic gradient de-
scent is the objective function itself. Let us consider V (s) = −L(s). We get automatically F (s) =

〈∇V (s), h(s)〉 = −‖h(s)‖2 ≤ 0, which meets the first condition of hypothesis (A). The second condition
(Int(V (S )) = ∅) can be checked with Sard’s theorem:

Theorem 4 (Sard). Let f : Rn → R be a Cn function. Then the image of the set of critical points of
f has Lebesgue measure zero: if S = {s | ∇f(s) = 0}, then |f(S )| = 0.

If its interior was not empty, Int(V (S )) would contain a ball with positive radius, and thus have
a positive Lebesgue measure. Therefore hypothesis (A) is satisfied. It remains to be seen wether
the algorithm is A-stable, that is to say wether sn is bounded and

∑
n γnen converges. Unfortunately,

theorem 2 does not apply because we don’t have any information on the asymptotic growth of the
loss function: as it contains neural networks, it is not coercive, and can even stay constant in a given
direction beyond a given point. After exploring various directions, we concluded that this problem
could not be avoided, and resolved to add a strong hypothesis to our theorem. In this section, we
assume that the variable sn is bounded almost surely. This makes hypothesis (B) automatically
satisfied. In the next section, we will be looking for a penalized version of the original optimization
problem which leaves the variable bound-free.
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Since we assume that the variable sn is bounded, we only need to prove that the series
∑
n γnen1V (sn−1)

converges to apply theorem 2. With this in mind, we will use a martingale theorem from Hall and
Heyde [24] (theorem 2.15 p.33):

Theorem 5. Let Sn =
∑n
i=1Xi a square integrable F -martingale with mean zero. Then Sn converges

almost surely to a finite limit on the set {
∑∞
n=0 E[X2

n+1 | Fn] <∞}.

Let F be the filtration defined by the algorithm. Let M ≥ 0, Xn = γnen1V (sn−1) and Sn =∑n
i=1Xi. We have the following lemma, which proves that Sn is a zero-mean, square integrable

F -martingale.

Lemma 1. For all n ∈ N, E[en|Fn] = 0, and the variance Var(en|Fn) is finite.

Another lemma proves that the convergence condition for theorem 5 is met almost surely:

Lemma 2. Assume that
∑
n γ

2
n < +∞. Then

∑∞
n=0 E[X2

n+1 | Fn] <∞ with probability one.

Both proofs are detailed in appendix A. As a consequence, we can apply theorem 2, which states
that the reprojected algorithm is A-stable. Since hypothesis (A) is also satisfied, theorem 1 applies
and the algorithm converges almost-surely toward a critical point of the objective function.

3.4.4 Second Lyapunov function: unbounded case?

We now seek a theoretical result which would get rid of the boundedness constraint on s. This requires
to find a Lyapunov function which satisfies hypothesis (B) over the whole set of parameters. We already
have a function V (s) = L(s) which satisfies F (s) = 〈∇V (s), h(s)〉 ≤ 0, but we can not guarantee that
F (s) is strictly negative beyond some compact set. This is in fact even false, since neural networks
may have unbounded plateaus, hence unbounded critical areas. For the same reason, we can not say
that V (s) is coercive.
We shall thus consider another Lyapunov function. However, V can not be any function and the
relation ship 〈∇V (s), h(s)〉 is very constraining. We did not find any clear way to derive other Lyapunov
functions. In turn, we tried to modify the original objective function by adding a regularization term.
We first tried to add a L2 penalization: since the ELBO is upper bounded (as we will see soon) and
the function inside of the expectation has a neural network-like structure, there is hope that, outside
of some compact set, the gradient of the penalized version would never vanish. However we could not
find a proper way to prove this property, even though we believe it is true.

The second option we found is far less attractive: it consists in adding a penalty so large that its
gradient dominates the upper bound 4 on the ELBO’s gradient. This translates into the following
penalized problem:

min
θ,ϕ
K(θ, ϕ) = −L(θ, ϕ) + λ(1 + ‖θ‖)4L+1(1 + ‖ϕ‖)4L+1 (VAE-P)

Since we assumed that the covariance are lower bounded, the ELBO L is upper bounded:

L(θ, ϕ) = log pθ(x)−KL(qϕ(z | x) || pθ(z | x))

≤ log pθ(x) = log

∫
pθ(x | z)pθ(z)dz

≤ log

∫
1√

(2π)D|Σθ(z)|
exp

(
−1

2
(x− µθ(z))tΣθ(z)−1(x− µθ(z))

)
pθ(z)dz

≤ log

∫
1√

(2π)D|Σθ(z)|
.1.pθ(z)dz

≤ −D
2

log(2πε)
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Therefore K(θ, ϕ) ≥ D
2 log(2πε) + α ‖θ‖2 + β ‖ϕ‖2 is coercive. Furthermore, by definition, its gradient

can not be zero since the regularization part has a gradient which dominates the ELBO’s gradient
(see proposition 4). Thus, taking V (s) = −K(s) grants that 〈∇V (s), h(s)〉 < 0, and hypothesis (B)
is thereby satisfied. Sard’s theorem also grants that hypothesis (A) is satisfied, and lemma 2 from
previous subsection still applies: hence we can apply theorem 2, and the algorithm is A-stable almost
surely. Theorem 1 allows to conclude that the algorithm converges almost surely toward a critical
point.
This result is not really what we hoped for, since the penalty is extremely strong as soon as the
network’s depth increases. The technical hurdle mentioned two paragraphs above keep us from being
able to state a stronger result on L2 penalties. Notice that the penalty can be chosen with an arbitrarily
small coefficient λ and that we may decide to apply it only after a certain norm threshold:

K(θ, ϕ) = −L(θ, ϕ) + λ(1 + 1‖θ‖>T (‖θ‖ − T ))4L+1(1 + 1‖ϕ‖>T (‖ϕ‖ − T ))4L+1

In that regard, this result is very similar to the previous one, since we constrain the parameters to stay
in a bounded set, this time by applying a strong penalty when overstepping the domain’s boundaries.

Remark 6. In this section, we had to use a very strong Lp penalty to get the a.s. convergence. We
had to apply a strong correction because we could not prove that, for smaller penalties, the objective
function has no critical point beyond a certain compact. However we believe that an L2 penalty should
be sufficient: in proposition 5, we make two additional assumptions. We assume that the activation
function is piecewise polynomial, and we restrict the support of the reparameterization variable ε to
a ball B(0, R). Under these extra assumptions, proposition 5 grants that, for every parameter s with
unit norm, there exists a threshold Ts beyond which, if t > Ts, the L2-penalized VAE objective has
no critical point. This is not equivalent to the condition we desire, because the threshold Ts is hard
to bound over the unit sphere: in some directions, the threshold may diverge. We believe that the
threshold is actually bounded, but could not prove it.

Proposition 5. Suppose that qϕ(z | x) is drawn from gϕ(x, ε) with ε ∼ N<R(0, I) a truncated normal.
Suppose moreover that the activation function σact is (finitely) piecewise polynomial. Then, in every
direction, the L2 penalized VAE objective has no critical point beyond a certain distance (dependent
on the direction) to the origin.

3.4.5 Summary

Overall, we proved two results, which both prove that the VAE algorithm almost surely converges
toward a critical point. Since the second result could be considered an overall way to bound the
variable s, which is a hypothesis for our first result, we do not mention it here.

Theorem 3. Consider the VAE algorithm. We assume that pθ and qϕ are Gaussian distributions
parameterized by neural networks with upper bounded covariance matrices: Σθ(z) � εI, Σϕ(x) � εI.
The network’s activation function is supposed to be smooth and Lipschitz. Then, if the networks’
parameters (θ, ϕ) stay bounded, the stochastic gradient descent for VAEs converges with probability
one to a critical point of the ELBO.

The main restrictions are the covariance lower bounds and the boundedness of the parameters.
The first one is natural and may help with the numerical stability of the algorithm. The second one is
present by theoretical necessity. Note that since in real life the parameters almost always never diverge
when training neural networks, this result still has some value as a theoretical insight: it confirms that
in most real-life cases, the algorithm actually converges toward a point of interest.

4 Understanding the inference gap

In a second part of my internship, we made some numerical experiments and tried to get a concrete
understanding of the numerical procedure of VAEs.
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We started by implementing the VAE algorithm on simple examples, namely a Gaussian mixture
model and the MNIST dataset. The objective was to understand what solutions were produced by the
algorithm in an situation, and track the evolution of the different terms in the ELBO.

4.1 Gaussian mixture

4.1.1 Model and variational family

The Gaussian Mixture Model (GMM) is a generative latent variable model: we observe the superpo-
sition of samples from K > 1 Gaussian densities, but we don’t know the mean and covariances of the
distributions, nor which point belongs to which distribution. The inference consists in retrieving this in-
formation. More formally, the model is defined by K Gaussian distributions N (µ1,Σ1), ...,N (µK ,ΣK).
The observation x is generated along with a latent integer z which indicates the index of the related
mode. z is drawn according to a multinomial distribution with parameter π. The variable θ regroups
the means and covariances of the clusters. The model is summarized below:{

pθ(z) =M(π1, ..., πK)

pθ(x | z) = N (µz,Σz)

Performing inference for a GMM is a classical task, at which the EM algorithm is far more suitable
than our method, which could be considered as a relaxation of the EM algorithm. But we found
interesting to apply the Variational Bayes algorithm in this simple setting so as to make sure to get
interpretable results.

Variational distribution As we work in the VB setting, we need to specify a variational family
for the decoding encoding distribution. Note that, in the GMM, we have an explicit expression of
the posterior density pθ(z | x), but we voluntarily choose to ignore this expression. Thus we choose a
deliberately wrong family of distributions: we define a model qϕ with an observation x and a discrete
latent variable z, with z following a multinomial distribution. However, the distribution of x is not
Gaussian: the angle direction around the mean is uniform,but the radius follows a Laplace distribution
instead of a normal distribution.

qϕ(x | z) =
1√

(2π)d|Σϕz |
exp

(
−
√

(x− µϕz )t (Σϕz )
−1

(x− µϕz )

)
We make this choice so as to ensure that the parameters of the distribution p are uncorrelated from
those of q. Therefore, just like p, the variational distribution q has a parameter πq for the prior
distribution of z, and a parameter for each mean and covariance. We compute the explicit value of
qϕ(z | x) using Bayes rule.

Numerical implementation with Pytorch We used the open source library Pytorch to perform
automatic differentiation and effortlessly compute the gradients we needed. However, while imple-
menting the algorithm, we came upon a problem with the reparameterization trick.

4.1.2 Differentiating through discrete latent variables

A note on the reparametrization trick Remember that the practical ELBO maximization relies
on the reparameterization trick, which allows to rewrite the ELBO from Eqϕ(z|x)[. . . ] (hard to differen-
tiate) to Eε∼P (ε)[. . . ] (we can put the gradient in the expectation). It consists in writing z = gϕ(ε, x)
to describe the distribution qϕ(z | x). However, in order for the reparameterization trick to work,
the function g obviously needs to be differentiable. Unfortunately, for GMMs the latent variable is
discrete, so that the trick will not work that easily.
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Option 1: the REINFORCE rule The first idea we came up with was to find another way to
compute the ELBO’s gradient. Namely, we directly computed the derivative of the expectation:

Ez[f(θ, ϕ, z)] =

∫
f(θ, ϕ, z)qϕ(z)dz

∂ϕEz[f(θ, ϕ, z)] =

∫
∂ϕf(θ, ϕ, z)qϕ(z) + f(θ, ϕ, z)∂ϕqϕ(z)dz

= Ez[∂ϕf(θ, ϕ, z) + f(θ, ϕ, z)∂ϕ log qϕ(z)]

This equation yields a new expectation, which is interesting because it provides an unbiased esti-
mator for the gradient and does not need the reparameterization trick. This estimator is the same as
the one used for the REINFORCE algorithm in Reinforcement Learning. We tried this solution and
implemented it, but the algorithm would not converge because of the high variance of the gradient
estimate.

Option 2: the Gumbel-Softmax distribution We found that a specific method was developed
to deal with this situation. It was proposed in 2016 simultaneously by [20] and [38]. We adopt the
formalism from the first article, for it had the most influence in the posterior litterature. The first
idea of the Gumbel-Softmax (GS) distribution is to consider a one-hot encoding of the latent variable.
That is to say, we convert z = k to ek the k-th vector of the canonical base of RK . The next step
is to realize that all the new possible values of z are the extremal points of the simplex of RK , i.e.
∆K = {y ∈ RK+ |

∑K
i=1 yi = 1}. The Gumbel-Softmax with temperature T is a relaxation of this

distribution over the simplex: the new variable z will be a point in ∆K .

Suppose we want to sample from the GS approximation of a multinomial distribution (π1, ..., πK).
The procedure is as follows:

Data: probabilities π, temperature T
Generate g1, . . . , gK ∼ Gumbel(0, 1) ;
Compute ak = gk + log πk for 1 ≤ k ≤ K ;

Compute yk = Softmax(a)k = exp(ak/T )∑K
i=1 exp(ai/T )

for 1 ≤ k ≤ K ;

Result: y

Algorithm 5: Sampling from the Gumbel Softmax distribution

The temperature parameter T controls the smoothness of the relaxation. As shown in figure 2,
a small temperature yields a distribution very close to the original categorical distribution, wheras a
bigger temperature tends to produce more uniform samples. There is a numerical tradeoff between
both extremes: T → 0 produces good samples but the related gradient estimator has a very large
variance, whereas larger T will have a better gradient variance and worse correspondence with the
original discrete distribution.

The main advantage of the GS distribution is to produce fully differentiable samples: the sam-
ples write indeed z = F (π1, ..., πk, g1, ..., gK) with gk ∼ Gumbel(0, 1). They also allow to adjust the
smoothing factor; in our experiments, we arbitrarily set this factor to T = 0.5, which we empirically
found out to be a good compromise between both extremes.

Finally, in the VAE sampling step, we replace sampling the discrete variable z ∈ {1, ...,K} by
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sampling from the GS distribution (z1, ..., zK). The replacement is executed as follows:

f(z) =

K∑
k=1

1z=kf(k) =⇒
K∑
k=1

zkf(k)

Figure 2: 1000 samples from the Gumbel-Softmax distribution with temperatures T ∈ {0.1, 0.4, 1}

Remark 7. To a lesser extent, the parametrization of π and Σ also required some work: we need
to insure the constraints π ∈ ∆K or Σ ∈ S++

n (R). We chose to express π as a softmax of auxiliary
variables: π = Softmax(ξ). In order to lighten the computations, we used diagonal covariance matrices,
and constrained the diagonal parameters to be positive by reparameterizing them as Σii = log(exp(λi)+
1). Finally we performed SGD on ξ and λ instead of π and Σ.

4.1.3 Numerical results

We ran the algorithm in dimension two for 1000 steps with learning rate 0.1 with various number of
clusters and cluster shapes. The algorithm turned out to work poorly with a large number of widely
spread clusters. This is the consequence of using SGD in a highly non convex optimization problem
with a relatively small number of parameters. We focus on cases with a small number of clusters
(K ≤ 5) and present here results with K = 3, which give the most interpretable results.

Interpreting the position of the means and covariances The algorithm’s output after 1000
iterations is displayed in figure 3. Several comments can be made on this result. First, the clusters are
correctly identified: no cluster contains points from two different distributions. Because of that, the
means of the pθ model are correctly identified and match the original means almost perfectly. Notice
that the covariance matrices of p are not well adjusted: this is due to their very slow convergence (had
we waited 20000 iterations that they would be in the right place).

However, when it comes to the parameters of the q distribution, the convergence seems much worse
a priori : the means do not adjust at all with the real cluster centers. Furthermore, they all seem to
be offset outward. In fact, this result can be easily interpreted. Remember that, when maximizing
the ELBO VAE, we only take into account the mathematical expression KL(qϕ(z | x) || pθ(z | x)) for
q. This particularly means that we do not care about maximizing the likelihood of the observation
qϕ(x), which would require a more precise estimation of the means (comparatively, the means for p
are better because the likelihood log pθ(x) is taken into account into the ELBO). The only criterion
that matters is how likely the point classification is. Moreover, the likelihood of a given class evolves
according to fuzzy decision boundaries, and the choice of a slightly outward offset guarantees that the
uncertainty between the classes is reduced. Figure 4 shows that, if on the contrary the means of qϕ
were offset inward the probabilities would tend to get closer one class from another.
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Figure 3: VAE algorithm applied to a mixture of 3 Gaussian distributions. The black dots represent
the true cluster means. The yellow dots and ellipses are the mean and 95% Gaussian confidence ellipses
of the covariance matrices of the encoder pθ. The green dots and ellipses are the mean and 95% Laplace
confidence ellipses of the decoder qϕ.

Time evolution of the objective components We track along the simulation the terms in the
ELBO: first the log pθ(x) term, for which we have an explicit expression in this model. However, we do
not have access to the explicit expression of the Kullback-Leibler divergence KL(qϕ(z | x) || pθ(z | x)).
We estimate it by sampling from q at each step. The result is displayed in figure 5. As we can see, the
KL divergence diminishes while the log-likelihood of p increases, which is reassuring: the VB algorithm
does what its is meant to do in this setting. Notice that the KL divergence does not seem converge to
zero, even though it might would be coherent (all the points are correctly classified). The difference
come from two factors: the covariances of p have not converged yet, and the q mode are Laplacian
instead of Gaussian. The size of the p covariances mainly contributes to changing the confidence of
p for its classification probabilities pθ(z | x). Apart from these points, the two posterior distributions
are relatively similar after the algorithm has converged: this is coherent since the inference problem is
simple and the variational family approximates the true posterior distribution well.

4.2 Hand-written digits

4.2.1 Model and variational famiy

We now consider the classical yet more complex case of the MNIST dataset. The MNIST dataset [35]
is a set of 60000 training images and 10000 test images representing hand-written digits. This example
was originally used the paper introducing VAEs [31]. We will use the same model with a slightly more
modern neural network architecture. The observations x we are given are 28 × 28 gray scale images.
The objective is to find a latent observation of an image in a much lower dimension space, for example
d = 16. The model, given the latent variable z, of an image x, is to consider each pixel an independent
Bernoulli variable whose parameter is a function of z. This set of probabilities is produced by a neural
network fθ(z). The variational distribution of z given x is a Gaussian distribution, whose mean and
covariance are parameterized by neural networks µϕ, Σϕ. The prior on z is a normal Gaussian. The
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Figure 4: Representation of the log-probability log qϕ(z | x) with red, green and blue channels corre-
sponding to the log-likelihood of each class. On the left, qϕ is parameterized by the means optained
through the optimization process. On the right, we compute the same log-probability with artificially
closer centers. We can see that, when the centers get too close, the outer contrast between the classes
diminishes, which explains the optimized positioning of the q means.

VAE model is summed up by the following equations:
pθ(z) = N (0, I)

pθ(xij | z) = Ber(fθ(z)ij)

qϕ(z | x) = N (µϕ(x),Σϕ(x))

In this model, the reparameterization trick applies without any problem, because the variational dis-
tribution is Gaussian: we use z = gϕ(ε, x) with ε ∼ N (0, I) and gϕ(ε, x) = µϕ(x) +

√
Σϕ(x)ε. As

usually for this example, we take Σϕ diagonal and parameterize is with Σϕ[i, i] = exp(λi) so as to
enforce the positivity constraint. Again, the model is implemented with Pytorch, whose automatic
backpropagation makes training possible. At training time, the images x (whose coordinate are floats
between 0 and 1) are randomly binarized according to the value of each pixel. The networks we use
have one hidden layers and 400 hidden units with ReLU and sigmoid activations. The model is trained
using Adam optimizer [30] with learning rate 10−3, using a batch size 128 over 10 epochs total.

4.2.2 Numerical results

As we can see in figure 6, the VAE correctly reproduces sample digits from each class, while also
preserving the intra-class shape variability (i.e. the diversity of shapes corresponding to each digit).
Since the reconstructed object is much more complex than the cluster means of the GMM, it is however
hard to assess the quality of the convergence at the first glance. As for GMM, we tracked the evolution
of log pθ(x) and KL(qϕ(z | x) || pθ(z | x)) across the epochs. Contrarily to the GMM, we do not
have access to explicit expressions of these quantities. Therefore we resorted to estimate them using
Importance Sampling (IS) at each step. Mainly, the problem lies in the expressions log pθ(x) and
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Figure 5: Time evolution of the ELBO, log pθ(x) and KL(qϕ(z | x) || pθ(z | x)) during the optimization
of Variational Bayes for GMMs.

Figure 6: On the first and third row, a binarized sample x from each digit class. On the second and
fourth row, the images of corresponding reconstructed probabilities fθ(µϕ(x)).

log pθ(z | x). Using Importance Sampling on the first quantity gives:

pθ(x) =

∫
pθ(x, z) dz =

∫
pθ(x, z)

qϕ(z | x)
qϕ(z | x) dz

= Eqϕ(z|x)
[
pθ(x, z)

qϕ(z | x)

]
'

K∑
k=1

pθ(x, zk)

qϕ(zk | x)

with z1, ..., zK
i.i.d∼ qϕ(z | x). IS is interesting in this situation because the distribution qϕ(z | x) is

precisely designed to be as close as possible from pθ(z | x), which is an important for the performance
of the IS. Similarly, we estimate the Kullback-Leibler divergence using Monte-Carlo estimation and by
using log pθ(z | x) = log pθ(x | z) + log pθ(z) − log pθ(x) and our previous approximation of log pθ(x).
Empirically, the variance of these estimations appears to be small with respect to their order of mag-
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nitude. The evolution we observed in figure 7.

Like for the GMM, we observe that the log-likelihood of p increases and the KL divergence di-
minishes with time. However, unlike GMM, the divergence does not converge to zero and stagnates
long before the likelihood stops rising. This is understandably a consequence of the amortization
gap that we mentioned earlier. In our case, this gap consists is the error between the best Gaussian
distribution approximating pθ(z | x) and the distribution N (µϕ(x),Σϕ(x)) produced by the encoder
q. When the structure of the data distribution gets more and more complex, the amortization will
logically perform worse. In our GMM example, there was no amortization because each cluster had its
own parameters. On the contrary, if we did not use amortization for MNIST pictures, we would have
to learn an individual Gaussian distribution for each one of the 70000 (training + testing) pictures in
the dataset.

Figure 7: Evolution across the training epochs of log pθ(x), KL(qϕ(z | x) || pθ(z | x)) and the ELBO
for the VAE algorithm on the MNIST dataset.

5 Extending the VAE algorithm

Our experiments with the MNIST dataset gave us a reliable code base for various experiments and
extensions of the VAE algorithm. We first tried to make a better use of old samples, then to include
an MCMC dynamic in the encoding distribution.

5.1 Using previous samples

More accurate Monte-Carlo Our initial idea was to re-use the samples of the qϕ distribution
generated in the previous steps of the algorithm when computing the estimate of the ELBO. This
would have allowed to reduce the variance of the estimate, in a similar fashion to the SAEM algorithm,
which aggregates the objective functions of all previous steps. However this approach is incompatible
with the reparameterization trick at its core: how should we use the sample from last state ? It does
not make any sense to keep only the value of the old ε because the center of the Gaussian distribution
changes at each step. and ε is only an offset relative to this center. We did not consider trying other
differentiation techniques like the REINFORCE rule, for we wanted to keep the algorithm as light as
possible. The REINFORCE rule needs a manual backpropagation (it is not implemented in any deep
learning framework), and thus requires to be adapted for each new model.

Insights from Sequential Monte Carlo Another idea we had was to give up on the parametric
representation of the variational distribution: instead, we would maintain for each observation x a
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collection of K samples z1, ..., zk. The samples would be generated by a parametric distribution qϕ
whose parameters would have been learned along the process. In order to make the samples represent
the distribution, we considered mechanisms inspired from Sequential Monte-Carlo [18] (SMC, aka
Particle Filtering or PF). SMC resolves the filtering problem (determine the distribution (zk | x1, ..., xk)
where (xk) is a hidden Markov chain and the distribution of (zk | xk) is known). SMC proceeds by
keeping a list of particles (z1, ..., zP ) at step k, and update them and their weight at step k + 1. The
weight of each particle is computed so as to guarantee that, even though the sample is discrete, is
represents the desired distribution as precisely as possible (in a way similar to Importance Sampling).
Our idea was, similarly, to attribute a weight to each sample so as to keep useful sample along iterations.
This method would have the advantage of keeping very old particles which may be far from the cluster
center µϕ(x) but still be relevant to approximate pθ(z | x). Regularly updating the probabilities would
have allowed to keep the particle set balanced. Furthermore, recent adaptations [34, 40, 2] of the SMC
framework to the VAE setting opened encouraging avenues of interactions between both fields.

The SMC variant idea also turned out to be impracticable. First, the method raised issues with
the reparameterization trick as in last paragraph. Furthermore, keeping a representative number of
particles per observation adds a non-negligible cost in terms of memory, as soon as the dataset exceeds
a few dozen thousands entries (e.g. the MNIST dataset). Finally, it turned out to be very delicate to
equilibrate the particle weights: in various tests, the coefficients would often collapse and concentrate
into a restricted number of particles.

Trying to improve only the sampling is a bad idea More generally, after various attempts and
many variants experiments, we realized that improving the sampling procedure without changing the
distribution qϕ was probably not a good idea, for several reasons:

• First, as we mentioned several times already, making a better use of previous samples makes the
reparameterization trick impracticable.

• Next, a more heuristic argument. Our previous explorations were aiming at making samples
closer to the desired distribution pθ(z | x). However improving the sampling quality without
changing qϕ is equivalent to maximizing an expectation which is different from the ELBO. For
instance if we correct each sample of qϕ with an Importance Sampling weight targeting pθ(z | x),
we will in fact be maximizing:

Epθ(z|x) [log pθ(x, z)− log qϕ(z | x)] = log pθ(x) + KL(pθ(z | x) || qϕ(z | x))

which is not even a lower bound on log pθ(x) anymore and favors bad distributions qϕ.

• The problem above could be solved if we considered that our variational distribution is not qϕ
but the samples we derived from it, as well as their related weights. However, such a distribution
would be a sum of Dirac masses and it would not make sense to compute its KL divergence with
pθ(z | x), which has a continuous density: discrete distributions are not amenable to the VAE
framework.

• Finally, consider the following question. What would such a variant reduce: the approximation
gap or the amortization gap? Using Importance Sampling weights or adding more samples will
not change the location of the distribution represented by qϕ, but it will change the empirical
histogram built on samples. Therefore it will have more impact on the shape of the distribution
(approximation) than on its location (amortization). Improving the sampling is thus expected
to reduce the approximation error, but not necessarily the amortization error. Besides, a recent
survey [12] highlights that the approximation error actually represents approximately 4% of the
total error, the remaining 96% being the amortization error (these results are obtained for the
standard VAE experiment on the MNIST dataset). This result is as a matter of fact not so
surprising: for example having a distribution placed in the right location but with an over-
skewed tail will always be better than having a distribution with the right profile but located
out of position - which is what happens when amortization is used and generalizes poorly.
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Remark 8. While we show in this section that designing new methods to improve the sampling
procedure in VAEs seems to be a bad idea, the estimation quality of the expectation can always be
improved. In particular, a recent paper [5] shows that using Quasi-Monte-Carlo sampling instead of
classical Monte-Carlo in Variational Inference leads to substantial improvements in terms of conver-
gence speed and quality.

5.2 Adding MCMC to the variational encoder

Following the conclusions of the above subsection, we focused on a different, yet since recently thriving,
field of the VI literature. Instead of changing the overall structure of the algorithm, the researchers
propose to tweak the encoding distribution qϕ(z | x) by adding to it a fixed number of MCMC steps
targeting pθ(z | x). In other words, the sample z at a given step is computed as follows: 1) simulate
z0 ∼ qϕ(z | x); 2) simulate (z1 | z0, x), ..., (zK | zK−1, x) from some Markov chain targeting pθ(z | x); 3)
use zK in the SGD procedure. Contrarily to the subsection above, adding MCMC steps would directly
act on the amortization error by displacing the latent variable in the right direction. However, it also
adds new technical challenges like differentiating through the MCMC steps.

The technique described above was first introduced in 2014 by Salimans et al. in [48]. As we just
said, the main idea is to generate a fixed size Markov chain from the original variational distribution
sample z0. This procedure introduces a collection of auxiliary variables y = (z0, z1, ..., zK−1) whose
likelihood also needs to be taken into account. Their distribution is determined by qϕ(zk+1 | zk).
Integrating these new variables in the variational lower bound yields the new ELBO:

Laux = Eqϕ(y,zK |x) [log[pθ(x, zK)r(y | zK , x)]− log qϕ(y, zK | x)]

Ideally, we would like to use r(y | zK , x) = qϕ(y | zK , x). When using this distribution for r, we
find that the new bound Laux is equal to the original ELBO L. However, this expression requires an
explicit formula for qϕ(zk | zk+1), which may not be available. Therefore we may have no other choice
but to introduce another parameterization rϑ to approximate the reverse kernel of the Markov chain.
The objective now thus consists in optimizing at the same time:

• the original model log pθ(x | z),

• the decoding first variable log qϕ(z0 | x),

• possibly: the Markov transition kernel log qϕ(zk+1 | zk),

• possibly: the approximate reverse transition kernel rϑ(zk | zk+1).

The MCMC-VI algorithm now just consists in performing SGD on this new objective. Understandably,
this new parameterization can lead to substantial computational costs. The authors of [48] solve this
problem by choosing to use Hamiltonian Monte Carlo as a MCMC targeting pθ(z | x). We briefly
introduce this technique to highlight its advantages in our setting.

Hamiltonian Monte Carlo Initially introduced in 1987 by physicians [19], Hamiltonian Monte
Carlo (HMC) is a MCMC method which, like Metropolis-Adjusted Langevin Algorithm, relies on a
time-continuous dynamics. Hamiltonian dynamics is a subfield of physics and optimal control where
the quantity of interest z is considered a particle with position equal to that quantity. The particle
also has a momentum v, which is a new auxiliary variable with same dimension as z. The particle’s
trajectory is guided by its momentum v = ż and a potential U(z) which depends only on the position.
The system is defined using a Hamiltonian H:

H(z, v) = U(z) +
1

2
‖v‖2
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The Hamiltonian equations determine the evolution of the system over time:{
ż = ∇vH
v̇ = −∇zH

The Hamiltonian system defines a revertible flow Ft(z). It can be proved that this flow is volume-
preserving, and that det JFt(z) = 1. Hamiltonian dynamics behave in an intuitive way: the Hamilto-
nian represents the energy, which is preserved across the trajectory. The curve z(t) looks like a ball
falling onto the landscape of U . Numerically, the Hamiltonian system is most of time simulated using
the Leapfrog algorithm, which guarantees that the Hamiltonian remains constant and stabilizes the
trajectory. The equations of the Leapfrog integrator from t to t+ ε are given by:

v(t+ ε/2) = v(t)− (ε/2)∇zH(z(t))

z(t+ ε) = z(t) + ε∇vH(v(t+ ε/2))

v(t+ ε) = v(t+ ε/2)− (ε/2)∇zH(z(t+ ε))

(LF)

The initial idea of HMC [42] is to use U(z) = − log π(z), where π is the distribution we want to
sample from: the variable z should indeed fall into the areas where the likelihood is high. However,
such a technique would greatly depend on the initial position and momentum: if the point starts far
away from the regions with high probability, it will acquire a very large momentum by the time it
reaches the likely regions, and the momentum will thus propel it outward again, so that we can not
hope to get an ergodic convergence. The main problem is thus that the Hamiltonian remains constant
across the trajectory. This problem is solved by stopping the trajectory every τ seconds to choose a
new random momentum from a Gaussian distribution: by doing this we ensure that, when the point
falls close to a high probability region, its old (possibly very high) momentum will be forgotten and
replaced by a lower value, so that the particle will be much more likely to stay in the high probability
region and explore it. After each piece of trajectory, the new position is accepted or rejected with
a Metropolis step which corrects the error in the numerical integration. The acceptance probability
is: exp(−H(zk+1,−vk+1) +H(zk, vk). If the numerical integrator preserved the Hamiltonian and was
revertible, the acceptance would always be 1. The HMC procedure is summarized in algorithm 6. It
can be proved that the variable zk converges in distribution toward the target π (the Markov transition
kernel defined by the algorithm satisfies the detailed balance equation for the distribution π).

Data: target distribution π(z), momentum variance σ2, leapfrog size η and initial position z0
while not converged do

Sample a momentum vk ∼ N (0, σ2I) ;
Compute (zk+1, vk+1) with T leapfrog steps from (zk, vk) ;
Accept / reject (zk+1, vk+1) with probability
α = min(1, exp(−H(zk+1,−vk+1) +H(zk, vk))) ;

end
Result: Sample z1, ..., zK

Algorithm 6: The Hamiltonian Monte-Carlo sampling algorithm

Hamiltonian VI As described above, HMC seems to be an interesting choice to append to the
VI algorithm. It requires indeed very few parameters (only the variance of the momentum σ2 needs
to be tuned). Moreover, when performing only one series of leapfrog steps (i.e. without Metropolis
acceptance step), the Hamiltonian flow z 7→ FT (z) is fully deterministic and differentiable, and the
reparameterization trick thus work. Furthermore, the volume-preserving property of the flow allows for
interesting simplifications in the computations: suppose we have a random variable z with distribution
q and another variable z′ = FT (z). Then the distribution of z′ is given by:

log q(z′) = log q(z)− log |det JFT (z)| = log q(z)
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so that the new distribution requires no more computational effort. Notice that, in the VI setting,
the posterior distribution pθ(z | x) is not known. Therefore the potential used in the Hamiltonian
computation is U(z) = log pθ(x, z). Since log pθ(x) is constant along the trajectory, using this potential
is rigorously equivalent to using log pθ(z | x).

The Hamiltonian Variational Inference algorithm proposed in [48] adds a new step after the initial
variational posterior sampling: the true variational posterior is obtained after applying a fixed number
of HMC leapfrogs. Notice that the original paper introducing HVI does not use the Metropolis rejection
step. A posterior paper [51] fixes this problem and proposes a differentiable way to account for the
rejection step. In their experiments, the authors of both [48] and [51] show that the new variational
posterior distribution performs better and yield higher ELBOs on the MNIST dataset as the number
of leapfrog steps increases.

In 2018, the Hamiltonian VI was adapted to the VAE framework [9] (i.e. θ is not a random variable
anymore but a parameter to be optimized). The approach is very similar to that of [48] (in particular,
no Metropolis step is used). The main difference lies in the sampling step: instead of performing a fixed
number of regular HMC leapfrogs, a tempering step is added after each step. After each numerical
integrator step k, the momentum is artificially decreased by a factor αk = βkαk−1. The idea is to
produce an effect similar to that of Annealed Importance Sampling [41]. The authors of [9] propose
two tempering schemes: a quadratic scheme and a free scheme. In the free scheme, the parameter β
is learned along with θ and ϕ. In the quadratic scheme, only β0 is learned, and the next coefficients
are determined by the formula:

βk =

((
1− 1

β0

)
k2

K2
+

1

β0

)−1
The resulting sampling procedure is included in the standard VAE algorithm, thus giving the Hamilto-
nian Variational Auto-Encoder (HVAE). As with HVI, numerical experiments, the authors show that
increasing the number of leapfrog steps improves the ELBO and thus the performance of the algo-
rithm. HVAE are the focus of the remaining part of my internship, and we will discuss some possible
improvements in the next subsection.

For the sake of completeness of the start of the art, we now quickly present a couple of similar
approaches which were proposed in 2019. These papers illustrate the pace at which the field of VI and
VAEs is developing (some of them were published during my internship).

• First, Ruiz and Titsias [47] proposes to perform HVI with an improved ELBO, which uses a
different KL divergence (which takes into account not only qϕ(zK | x) but also qϕ(z0 | x)). They
show that this algorithm performs slightly better than the VAE algorithm.

• In [16], Ding and Freedman propose an variant of IWAEs (Importance Weighted Auto-Encoders,
described in section 3.1.2) based on Annealed Importance Sampling. Just like Salimans et al.,
they add HMC steps to the variational posterior approximation. However the MCMC target is
not pθ(z | x) but a combination of pθ(z | x) and qϕ(z | x): they use the unnormalized distribution
fn(z) = qϕ(z | x)1−βnpθ(x, z)

βn , with n the iteration number and 0 = β0 < ... < βN = 1. This
improved version of IWAE, called AIWAE, is shown to perform better than IWAE. In particular,
they improve the way the latent space is used by the encoder and the decoder, which was one of
the original advantages of IWAEs.

• Vahdat et al. [49] propose an inference procedure in the MCMC-VI framework for undirected
graphical models. In this situation, one can use Gibbs sampling as a MCMC, which produces
samples which are much faster to differentiate than HMC (which requires to backpropagate
the gradient through all the leapfrog steps). The authors show that this method outperforms
previous algorithms for training VAEs on posteriors with a directed graphical model structure.
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Figure 8: On the left, the histogram of 10000 Gaussian samples. In the middle, the same samples after
a planar flow transformation. On the right, the samples after a radial (outward) flow transformation.

Another approach whose popularity has been growing recently is that of Normalizing Flows (NF).
Even though it does not exactly consist in a series of MCMC steps, the resemblance creates an inter-
esting parallel between NF and MCMC-VI, and both are often compared in the literature.

Normalizing Flows are essentially smooth, invertible, parameterized transformations. In 2015,
Rezende et al. [46] proposed a new kind of variational posterior distribution. Until there, much
effort was spent on studying simple distribution with sophisticated parameterizations (e.g. Gaussian
distributions with mean and covariances determined by neural networks). On the contrary, the authors
study a posterior distribution which is a parameterized function of a standard Gaussian variable
z0 ∼ N (0, I). The parameterized function is a composition simple invertible transformations: zK =
fKx ◦ ... ◦ f1x(z0). The probability density of the final posterior zK can be computed explicitly:

log qϕ(zK | x) = log q(z0)−
K∑
k=1

log

∣∣∣∣det
∂fkx
∂zk−1

∣∣∣∣
which makes backpropagation tractable. The functions fxx are simple transformations, like planar flows
or radial flows (see figure 8 for simple examples). Their parameters, in turn, are computed from x
using neural networks. When applied to VI, Normalizing Flows exhibit overall similar performances as
MCMC-VI methods at a given total parameters number. They also show that NFs are able to handle
naturally multi-modal posterior distribution (as can be seen with our example for the planar flow).
Like MCMC-VI, NFs is a rapidly growing field: a workshop on Invertible Neural Network and NFs
was organized this year at ICML (https://invertibleworkshop.github.io/), and new extensions
of the framework are regularly proposed [37].

5.3 Ongoing research

5.3.1 A Riemannian Manifold HVAE ?

As we investigated throughout the literature, we were interested in the idea of HVAE and HVI. It had
become relatively clear that including MCMC inside the posterior distribution and not outside (as we
were trying to do in the last subsection) was the right idea. We thus wondered wether we could think
of an relevant way to improve the performance of HVAEs. My teaching advisor advised me to try to
connect HVI with the existing work on Riemannian HMC.

Riemannian Manifold Hamiltonian Monte Carlo (RHMC) was first introduced by Girolami
et al. [23, 22]. It is a technique which allows to perform HMC on Riemannian manifold, or just to

perform a smarter form of HMC. In the Hamiltonian of HMC H(z, v) = − log p(z) + 1
2 ‖v‖

2
, the choice

of the L2 norm for v could seem arbitrary. A classical variant consists in introducing a symmetric
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positive definite matrix mass M which changes the norm used for v: vT v is replaced by vTM−1v, and
v is now drawn from the distribution N (0,M). Another term log((2π)D|M |) also needs to be added
to the Hamiltonian, so that is represents the complete log-likelihood p(z, v). We thus get:

H(z, v) = − log p(z, v) = − log p(z)− log p(v) = − log p(z) + log((2π)d|M |) + vTM−1v

Changing the matrix M typically acts on the geometry of the variable’s space, widening or shrinking the
distances along the eigenvectors. It can be interpreted as changing the inner product (the Riemannian
metric) of the tangent space of the space considered as a manifold. From that perspective, it is also
possible to make the metric space-dependent, i.e. to replace M with M(z). Girolami et al. propose
an optimal design for M(z) adapted to the geometry of the space of parameters as well as a numerical
method to simulate the related Hamiltonian dynamics. The authors explain that, if the variable of
interest z is the parameter of a model p(x | z), then the optimal choice for the metric is the Fisher
information of this parameter E[∇z log p(x|z)∇z log p(x|z)T ].

Riemannian HVAE The idea we have thus consists in adding a Riemannian metric to the la-
tent space and use it when performing HMC steps after drawing the initial point from the Gaussian
distribution N (µϕ(x),Σϕ(x)). Three general options are being considered:

• Using a constant metric M0. This approach should not be expected to produce significant
improvements since neural networks can easily mimic this behavior by making linear transfor-
mations of their own.

• Using the Fisher information I(z) related to the model pθ(x | z). Even though this quantity is
not known, we could consider using the observation x which was used by µϕ to generate z.

• Learning the metric M(z) using a neural network. This option would however significantly
increase the number of parameters. We hope to be able to compare the metric which is learned
with the estimate of the Fisher information.

Since the HVAE algorithm already has a clean Python implementation using TensorFlow [8], it is
possible to design an upgrade implementing those new features without restarting the code from
scratch.

5.3.2 Experiments with RHMC

Before implementing the RHVAE, we first wanted to get an intuitive grasp on the way RHMC works
in practice. Moreover, the RHMC numerical scheme is a lot more complicated than HMC’s simple
leapfrog method, so that a first implementation was also useful as a reference for implementing the
RHVAE.

Numerical implementation We tried successively two numerical schemes for the RHMC, respec-
tively proposed in [23] and [22]. Both methods aim at correcting the leapfrog method when adding a
Riemannian metric: the classical numerical scheme does not preserve the Hamiltonian anymore. The
first method, proposed in the original paper introducing RHMC, designs an entirely new symplec-
tic integrator based on the new differential equations. Symplectic integrators take stock on the fact
that, for an ODE ẋ = (A + B)x (where A,B are possibly non-linear yet simple operators), we have
xt = exp(t(A + B))x0. Since the exponential can not be factorized easily, an approximation is used
for small time steps: exp(ε(A + B)) ' exp(εa1A) exp(εb1B)... exp(εaSA) exp(εbSB) + O(εS), where
a1 + ... + aS = 1 and b1 + ... + bS = 1. This method is applied to the Hamiltonian system in [23]
with a bigger number of linear operators. The implementation of this method worked successfully,
but when it came to include it into the RHVAE code the method would not scale up, thus taking a
considerable amount of time per batch. We tried to see wether explicit computations could lead to
reduce the number of approximation steps, but we did not get any easily usable formula.
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Therefore we turned ourselves toward another implementation proposed in the more recent article
[22], which introduces the same RHMC method but proposes a different numerical scheme:

v(t+ ε/2) = v(t)− (ε/2)∇zH(z(t), v(t+ ε/2))

z(t+ ε) = z(t) + (ε/2) (∇vH(z(t), v(t+ ε/2)) +∇vH(z(t+ ε), v(t+ ε/2)))

v(t+ ε) = v(t+ ε/2)− (ε/2)∇zH(z(t+ ε), v(t+ ε/2))

(GLF)

This scheme, called the Generalized Leapfrog, is much more similar to the original Leapfrog integrator
(LF). The main difference is that this new scheme is implicit: for instance the expression giving
v(t+ε/2) contains itself v(t+ε/2). We turned these equation into a numerical algorithm by solving the
implicit equations using a fixed point procedure, i.e. computing vk+1 = f(vk) until convergence vk =
f(vk). In practice, only a few (3-4) iterations suffice to get a very accurate result and a Hamiltonian-
preserving scheme.

Gaussian density We first compared HMC and RHMC on a simple Gaussian density, with a covari-
ance particularly stretched along one dimension, typically Σ = Diag(1, 10). We used various metrics
to get a concrete understanding of the way RHMC works. It seems that, the smaller the metric is
in a given direction (i.e. the smaller the eigenvalue along a given eigenvector), the more amplitude
the points has in this direction. For instance, using a small metric εI2 would produce extremely large
trajectories which would never converge toward the right distribution. With this in mind, the natural
choice wad to use a constant metric G(x) = Σ−1, i.e. a metric which would favor the motion along the
y axis. We ran the Leapfrog and Generalized Leapfrog algorithms for 25*25 steps, with one Metropolis
acceptance every 25 step. The result is shown in figure 9. Both trajectories explore the entire Gaussian
more, but the behaviors clearly differ: the RHMC algorithm acts at the right scale in each direction,
whereas the classical HMC oscillates as a point stuck in a narrow valley. An immediate consequence is
that the autocorrelation of the coordinates decreases much faster for the RHMC; mixing rate should
also be better, since the space is explored more uniformly after a reduced amount of time steps.

Figure 9: Classical HMC (left) vs. Riemannian HMC (right) with constant metric.

Using Fisher information Next we tried to see the impact of using the Fisher information on
the performance of the MCMC. We generated a sample x1, ..., x1000 from a distribution N (0,Σ) with
Σ = Diag(12, 72) and performed Bayesian inference on the standard deviations σi along each axis.
Notice that we voluntarily choose a scale dissymmetry between the two components so as to evidence
the misbehavior of the classical HMC. We used an Inverse Gamma prior with parameters α = 2, β = 1
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for σ1 and σ2. The complete log-probability given to the RHMC sampler was thus given by log p(x |
σ) + log p(σ). The Fisher information of the model p(x | σ) can be computed explicitly: we have
I(σ) = Diag(2/σ2). We thus used G(σ) = I(σ) for the RHMC in this experiment. We ran the
Leapfrog and Generalized Leapfrog algorithms for 25*25 steps, with one Metropolis acceptance every
25 step. The result is displayed in figure 10. Again, we can see that the Riemannian metric accelerates
a lot the MCMC’s convergence. Furthermore, in the first case the distribution is not explored enough in
the lower right area, which is not the case with the RHMC. This is a very understandable consequence
of the Fisher metric shape I(σ)ii = 2/σ2

i : the diagonal coefficients decrease along each corresponding
axis. As a consequence (smaller metric =⇒ bigger motion), the motion sensitivity is amplified when
the point gets further from the origin along an axis or the other. This behavior corresponds to the
profile of the likelihood function, hence it explains partly the better performance of RHMC on this
specific example.

Figure 10: Classical HMC (left) vs. Riemannian HMC (right) using Fisher information for the posterior
distribution of σ given x. The contour describes the complete log-likelihood log p(x, σ) and the red
dot is the ground truth.

5.3.3 Implementation issues with RHVAE: ongoing work

For the time being, I have not finished including the Riemannian Manifold HMC into the Hamiltonian
VAE algorithm. Several reasons can be accounted for:

• The original HVAE implementation was proposed in TensorFlow. In order to insure the results
reproducibility and make a comparison with the original method relevant, we had to convert our
Pytorch-based RHMC implementation, which takes time as the differentiation mechanisms work
differently in both frameworks.

• I first spent a consequent time on trying to implement the symplectic integrator of [23] into Ten-
sorFlow. However one of the differential sub-operators scales poorly with the latent dimension,
and the algorithm can not be fully vectorized, which lead to very heavy computations. I later
moved on to the Generalized Leapfrog implementation proposed in [22], which should not face
such issues, but I could not finish this implementation during my internship.
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Nevertheless, as I am still interested to see wether adding a Riemannian metric will improve the
performance of the HVAE, I plan to finish this work with my internship tutor Stéphanie Allassonnière,
which will also become my thesis advisor starting from October. To be continued !

6 Conclusion

My internship allowed me to discover the wide and ever-expanding field of Variational Inference and
the related algorithms. My work led me from the MVA courses up to the state of the art and its most
recent developments. Variational Inference in its current state is still evolving fast, and the related
computational tools, although very powerful, are not mature yet. The research community’s attention
is being driven increasingly toward the question of the inference gap which is crucial when using neural
networks in the inference model. Ideas like MCMC-VI are starting to emerge as possible answers to
this problem, but still need to prove more efficient before they can be called a true solution. We hope
that our work on Riemannian manifold VAEs will help shed a piece of light on this ambitious challenge.

I was also very interested by the theoretical part of my internship. Most of the stochastic ap-
proximation tools necessary to analyze the convergence of the current algorithms exist for more than
thirty years, yet little attention seems to have been devoted to analyzing their relevancy to the cur-
rent ill-understood neural networks-related problems. Our work however suggests that interesting
insights could be drawn from an in-depth technical analysis of the convergence hypotheses and their
satisfiability.

Finally, my internship was a great opportunity to immerse myself into the world of academical
research and applied mathematics. It confirmed my desire to continue my studies into a PhD with my
internship advisor Stéphanie Allassonnière as well as Stanley Durrleman. The topic I will be working
on is not directly related to my internship’s theme, even though both are connected to the more
general question of statistical inference. I will be working to try to adapt the LDDMM model’s shape
deformation theory to the setting of large graphs. The idea is to capture a similar kind of structure and
thus to measure distances between large graphs. Such a distance could then be employed to compute
means of large graphs. The application domains range in the medical field from neuroscience modeling
to protein regulation networks.
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A Proofs for the stochastic approximation

A.1 Growth bounds for neural networks and the ELBO

Proposition 1. Let fθ(x) a neural network with L layers with no activation on the final layer, with
k-Lipschitz activation function σact. Then we have |fθ(x)| ≤ C(1 + ‖θ‖)L(1 + ‖x‖), where C is a
constant depending on L, k and σact(0).

Proof. We proceed by induction: let fθ(x) = σact(Wx+ b) be a one-layer network. Then we have:

|fθ(x)− fθ′(x)| ≤ k|(W −W ′)x+ b− b′|
≤ L(1 + |x|)(|W ′ −W |+ |b′ − b|) ≤ k(1 + ‖x‖)(1 + ‖θ − θ′‖)

The result is true by taking θ′ = 0. Consider now a network with L + 1 layers: this writes fθ(x) =
σact(Wgθ(x) + b), where gθ is a network with L layers. We also denote C0 = |f0(x)| a constant which
depends only on the network’s structure. We get:

|fθ(x)− f0(x)| ≤ L|Wgθ(x) + b− f0(x)|
≤ k(|W |.|gθ(x)|+ |b|+ C0)

≤ k(1 + C0)(1 + |W |+ |b|)(1 + |gθ(x)|)
≤ k(1 + C0) ‖θ‖ (1 + (1 + ‖θ‖)L(1 + ‖x‖))
≤ K(1 + ‖θ‖)L+1(1 + ‖x‖)

Hence the result.

In the proofs that follow, C will denote an arbitrary constant depending on L, k, σact(0), N, dim z
and the norms ‖xi‖, which is large enough for our purpose. It might change from one line to another.
Note that it does not impact the final results, which are asymptotic growth bounds.

Proposition 2. Under the previous assumptions, there exists a constant C depending on L, k, σact(0),
N, dim z and the norms ‖xi‖ such that |L(θ, ϕ)| ≤ C(1 + ‖θ‖)2L(1 + ‖ϕ‖)2L.

Proof. Let us first recall the expression of a multivariate Gaussian density with mean µ and covariance
Σ:

N (µ,Σ) =
1

√
2π

d√|Σ| exp

(
−1

2
(x− µ)tΣ−1(x− µ)

)
Since the encoder is Gaussian, the reparameterization trick writes for z: zi = gϕ(εi, xi) = µϕ(xi) +√

Σϕ(xi)εi. We can now write the ELBO:

L(θ, ϕ) = −Eqϕ(z|y)

[
1

N

N∑
i=1

log pθ(xi, zi)− log qϕ(zi | xi)

]

= −Eqϕ(z|y)

[
− 1

2N

N∑
i=1

log det Σθ(zi) + (xi − µθ(zi))Σθ(zi)−1(xi − µθ(zi)) + ‖zi‖2

+
1

2N

N∑
i=1

log det Σϕ(xi) + (zi − µϕ(xi))Σϕ(xi)
−1(zi − µϕ(xi))

]

= −EP (ε)

[
− 1

2N

N∑
i=1

log det Σθ(gϕ(εi, xi))

+ (xi − µθ(gϕ(εi, xi)))Σθ(gϕ(εi, xi))
−1(xi − µθ(gϕ(εi, xi))) + ‖gϕ(εi, xi)‖2

+
1

2N

N∑
i=1

log det Σϕ(xi) + ‖εi‖2
]
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We bound this expression term-wise. The determinant of a matrix is a degree d polynomial in its
coefficients, so we have ε < det Σ ≤ C(1+‖Σ‖)d, and thus | log det Σ| ≤ | log ε|+logC+d log(1+‖Σ‖) ≤
C(1 + ‖Σ‖) (C is any constant). Furthermore, as Σ is upper bounded, its inverse is lower bounded:

∥∥Σ−1
∥∥2
2

=
∑
i

1

Σ2
ii

≤ d

ε2

Furthermore, in VAEs, gϕ(εi, xi) = µϕ(xi) +
√

Σϕ(xi). Since we assumed the covariance diagonal, we
get:

|L(θ, ϕ)| ≤ EP (ε)

[
1

2N

N∑
i=1

C(1 + ‖xi‖)(1 + ‖ϕ‖)L(1 + ‖εi‖)(1 + ‖θ‖)L

+
Cd

ε2
(‖xi‖+ ‖µθ(gϕ(εi, xi))‖)2 + C(1 + ‖xi‖)(1 + ‖ϕ‖)L(1 + ‖εi‖)

+ C(1 + ‖xi‖)(1 + ‖ϕ‖)L + ‖εi‖2
]

≤ C

2N
(1 + ‖ϕ‖)2L(1 + ‖θ‖)2LEP (ε)

[
N∑
i=1

(1 + ‖xi‖)2(1 + ‖εi‖)2
]

Since the εi are Gaussian, they admit a second order moment, and we have the overall data-dependent
bound |L(θ, ϕ)| ≤ C(1 + ‖θ‖)2L(1 + ‖ϕ‖)2L.

Proposition 3. Let fθ a neural network with L layers without activation on the last layer, σact a
smooth and k-Lipschitz activation function. Then there exists a constant C depending on L, k and d
such that |∂θ[fθ(x)]| ≤ C(1 + ‖θ‖)2L(1 + ‖x‖) and |∂x[fθ(x)]| ≤ C(1 + ‖θ‖)L.

Proof. We follow the notations from François Malgouyres’s course on backpropagation [21]: chθ is
the action of layer h, dhθ is the same function but using σ′act instead of σact; F

h
θ = cLθ ◦ ... ◦ c

h+1
θ ;

fh−1θ = ch−1θ ◦ ... ◦ c1θ. The proposition at slide 36/55 writes:

∂θ[fθ(x)](θ) · θ′ =

L∑
h=1

∂x[Fhθ (x)](fhθ (x)) ·Diag(dhθ (fh−1θ (x))) · (W ′hfh−1θ (x) + b′h) (1)

The term ∂x[Fhθ (x)] is computed using the proposition at slide 37/55:

∂x[Fhθ (x)](f) = ∂x[Fh+1
θ (x)](ch+1

θ (f)) ·Diag(dh+1
θ (f)) ·Wh+1 (2)

We recall that σact is assumed to be k-Lipschitz. The formula above thus gives by induction an
easy upper bound:

|∂x[Fhθ (x)](f)| ≤ kL−h ‖θ‖L−h ≤ C(1 + ‖θ‖)L (3)

This equation yields the gradient in x when h = 0. Notice that we should not be surprised that
the Jacobian in x is upper bounded by a constant (see proposition 1). We now plug this upper bound
into equation 1 and we get:

|∂θ[fθ(x)](θ) · θ′| ≤
L∑
h=1

C(1 + ‖θ‖)Lk(|W ′h|.|fh−1θ (x)|+ |b′h|)

≤ C(1 + ‖θ‖)L
L∑
h=1

(1 + |fh−1θ (x)|)(|W ′h|+ |b′h|)
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And proposition 1 gives |fh−1θ (x)| ≤ C(1 + ‖θ‖)h−1(1 + ‖x‖), hence:

|∂θ[fθ(x)](θ)| ≤ C(1 + ‖θ‖)L
L∑
h=1

(1 + ‖θ‖)h−1(1 + ‖x‖)

≤ C(1 + ‖θ‖)2L(1 + ‖x‖)

Proposition 4. Under the previous hypotheses, there exists a constant C depending on L, k, σact(0),
N, dim z and the norms ‖xi‖ such that |∇L(θ, ϕ)| ≤ C(1 + ‖θ‖)4L(1 + ‖ϕ‖)4L.

Proof. We proceed in two steps. First, compute the gradient of each term in the ELBO and bound
them individually. Then we aggregate these bounds into the result.

Step 1. We compute the derivatives using chain rule and apply propositions 1 and 3 on each
component.

• gϕ(εi, xi)j = µϕ(xi)j +
√

Σϕ(xi)jεij . Hence the derivative:

∂ϕgϕ(εi, xi)j = ∂ϕµϕ(xi) +
εij

2
√

Σϕ(xi)j
∂ϕΣϕ(xi)j

Since we assumed Σϕ � εI, we get the upper bound:

|∂ϕgϕ(εi, xi)| ≤ |∂ϕµϕ(xi)|+
1

2
√
ε
‖εi‖ .|∂ϕΣϕ(xi)| ≤ C(1 + ‖εi‖)(1 + ‖ϕ‖)2L(1 + ‖xi‖)

• log det Σϕ(xi) =
∑
j log σjϕ(xi). Hence the derivative:

|∂ϕ log det Σϕ(xi)| =

∣∣∣∣∣∣
∑
j

1

σjϕ(xi)
∇ϕσjϕ(xi)

∣∣∣∣∣∣ ≤ d

ε
|∂ϕΣϕ(xi)|

≤ C(1 + ‖ϕ‖)2L(1 + ‖xi‖)

• log det Σθ(gϕ(εi, xi)) =
∑
j log σjθ(gϕ(εi, xi)), hence:

|∂θ log det Σθ(gϕ(εi, xi))| ≤
d

ε
|∂θΣθ(gϕ(εi, xi))| ≤ C(1 + ‖θ‖)2L(1 + ‖gϕ(εi, xi)‖)

≤ C(1 + ‖θ‖)2L(1 + ‖xi‖)(1 + ‖ϕ‖)L(1 + ‖εi‖)

• ∇ϕ log det Σθ(gϕ(εi, xi)) = ∇x[log det Σθ(x)]∂ϕgϕ(εi, xi), hence:

|∇ϕ log det Σθ(gϕ(εi, xi))| ≤
d

ε
|∂xΣθ(x)|.|∂ϕgϕ(εi, xi)| ≤ C(1+‖θ‖)L(1+‖εi‖)(1+‖ϕ‖)2L(1+‖xi‖)

• ∇ϕ ‖gϕ(εi, xi)‖2 = 2[∂ϕgϕ(εi, xi)]
tgϕ(εi, xi), hence:

|∇ϕ ‖gϕ(εi, xi)‖2 | ≤ C(1 + ‖εi‖)(1 + ‖ϕ‖)2L(1 + ‖xi‖).(1 + ‖xi‖)(1 + ‖ϕ‖)L(1 + ‖εi‖)
≤ C(1 + ‖εi‖)2(1 + ‖ϕ‖)3L(1 + ‖xi‖)2
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• (xi−µθ(gϕ(εi, xi)))
tΣθ(gϕ(εi, xi))

−1(xi−µθ(gϕ(εi, xi))) =
∑
j

1

σjθ(gϕ(εi, xi))
(xi−µθ(gϕ(εi, xi)))

2
j .

Which gives in θ (remark: each coordinate of a network’s output can be considered a network
by itself):

∇θ[...] =
∑
j

1

σjθ(gϕ(εi, xi))
∇θ(xi − µθ(gϕ(εi, xi)))

2
j −
∇θσjθ(gϕ(εi, xi))

σjθ(gϕ(εi, xi))2
(xi − µθ(gϕ(εi, xi)))

2
j

|∇θ[...]| ≤
∑
j

1

ε
|∇θ(xi − µθ(gϕ(εi, xi)))

2
j |+

1

ε2
|∇θσjθ(gϕ(εi, xi))|(xi − µθ(gϕ(εi, xi)))

2
j

≤ C
∑
j

|(µθ(gϕ(εi, xi))− xi)j |.|∇θµθ(gϕ(εi, xi))j |

+ (1 + ‖θ‖)2L(1 + ‖gϕ(εi, xi)‖)(1 + ‖xi‖)2(1 + ‖µθ(gϕ(εi, xi))‖2)

≤ C(1 + ‖µθ(gϕ(εi, xi))‖)(1 + ‖xi‖)
∑
j

|∇θµθ(gϕ(εi, xi))j |

+ C(1 + ‖θ‖)2L(1 + ‖gϕ(εi, xi)‖)(1 + ‖xi‖)2(1 + ‖µθ(gϕ(εi, xi))‖2)

≤ C(1 + ‖θ‖)L(1 + ‖ϕ‖)L(1 + ‖εi‖)(1 + ‖xi‖)2 × d(1 + ‖θ‖)2L(1 + ‖ϕ‖)L(1 + ‖εi‖)(1 + ‖xi‖)
+ C(1 + ‖θ‖)2L(1 + ‖ϕ‖)L(1 + ‖εi‖)(1 + ‖xi‖)3 × ((1 + ‖θ‖)L(1 + ‖ϕ‖)L(1 + ‖εi‖)(1 + ‖xi‖))2

≤ C(1 + ‖θ‖)4L(1 + ‖ϕ‖)3L(1 + ‖xi‖)5(1 + ‖εi‖)3

Similarly, we get with ϕ:

|∇ϕ[...]| ≤
∑
j

1

ε
|∇ϕ(xi − µθ(gϕ(εi, xi)))

2
j |+

1

ε2
|∇ϕσjθ(gϕ(εi, xi))|(xi − µθ(gϕ(εi, xi)))

2
j

≤ C
∑
j

|(µθ(gϕ(εi, xi))− xi)j |.|∇ϕµθ(gϕ(εi, xi))j |

+ C|∇x[σjθ(x)](gϕ(εi, xi))|.|∂ϕgϕ(εi, xi)|(1 + ‖xi‖)2(1 + ‖µθ(gϕ(εi, xi))‖2)

≤ C(1 + ‖θ‖)L(1 + ‖ϕ‖)L(1 + ‖εi‖)(1 + ‖xi‖)2
∑
j

|∇x[µjθ(x)](gϕ(εi, xi))|.|∂ϕgϕ(εi, xi)|

+ C(1 + ‖θ‖)L × (1 + ‖εi‖)(1 + ‖ϕ‖)2L(1 + ‖xi‖)3 × (1 + ‖µθ(gϕ(εi, xi))‖2)

≤ C(1 + ‖θ‖)L(1 + ‖ϕ‖)L(1 + ‖εi‖)(1 + ‖xi‖)2 × (1 + ‖θ‖)L × (1 + ‖εi‖)(1 + ‖ϕ‖)2L(1 + ‖xi‖)
+ C(1 + ‖θ‖)L × (1 + ‖εi‖)(1 + ‖ϕ‖)2L(1 + ‖xi‖)3 × ((1 + ‖θ‖)L(1 + ‖ϕ‖)L(1 + ‖εi‖)(1 + ‖xi‖))2

≤ C(1 + ‖θ‖)3L(1 + ‖ϕ‖)4L(1 + ‖xi‖)5(1 + ‖εi‖)3

Step 2. We aggregate all these bounds into the ELBO. We recall the developed expression of L:

L(θ, ϕ) = −EP (ε)

[
− 1

2N

N∑
i=1

(
log det Σθ(gϕ(εi, xi))) + (xi − µθ(gϕ(εi, xi)))Σθ(gϕ(εi, xi))

−1(xi − µθ(gϕ(εi, xi)))

+ ‖gϕ(εi, xi)‖2
)

+
1

2N

N∑
i=1

log det Σϕ(xi) + ‖εi‖2
]
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We can now bound the complete ELBO gradient:

|∇L(θ, ϕ)| = |∇θL(θ, ϕ)|+ |∇ϕL(θ, ϕ)|

≤ 1

2N
Eε

[
N∑
i=1

|∇θ log det Σθ(gϕ(εi, xi)))|+ |∇ϕ log det Σθ(gϕ(εi, xi)))|

+ |∇θ[...]|+ |∇ϕ[...]|+∇ϕ ‖gϕ(εi, xi)‖2 + |∇ϕ log det Σϕ(xi)|

]

≤ C

2N
Eε

[
N∑
i=1

(1 + ‖θ‖)2L(1 + ‖xi‖)(1 + ‖ϕ‖)L(1 + ‖εi‖) + (1 + ‖θ‖)L(1 + ‖εi‖)(1 + ‖ϕ‖)2L(1 + ‖xi‖)

+ (1 + ‖θ‖)4L(1 + ‖ϕ‖)3L(1 + ‖xi‖)5(1 + ‖εi‖)3 + (1 + ‖θ‖)3L(1 + ‖ϕ‖)4L(1 + ‖xi‖)5(1 + ‖εi‖)3

+ (1 + ‖εi‖)2(1 + ‖ϕ‖)3L(1 + ‖xi‖)2 + (1 + ‖ϕ‖)2L(1 + ‖xi‖)

]

≤ C

2N
(1 + ‖θ‖)4L(1 + ‖ϕ‖)4L

N∑
i=1

(1 + ‖xi‖)5Eε
[
(1 + ‖ε1‖)3

]
We finally get |∇L(θ, ϕ)| ≤ C(1 + ‖θ‖)4L(1 + ‖ϕ‖)4L.

A.2 Miscellaneous lemmas and propositions

Lemma 1. For all n ∈ N, E[en|Fn] = 0, and the variance Var(en|Fn) is finite.

Proof. Let us recall the definition of en: en = ∇L̂(sn)−h(sn), where h(s) is the gradient of the ELBO

and L̂ its estimate on a mini-batch. Let Bn be the random batch selected at step n. Let ε1, ..., εN be
independent samples of P (ε). Then L̂ write:

L̂(s) =
1

|B|
∑
i∈B

f(s, xi, εi)

with f(s, x, ε) = log pθ(x, gϕ(ε, x))− log qϕ(gϕ(ε, x) | x). Therefore we have:

E[∇L̂(sn) | sn] = E

[
1

|B|
∑
i∈B
∇f(sn, xi, εi) | sn

]

=
1

|B|

N∑
i=1

E [E[δi∈B∇f(sn, xi, εi) | sn] | sn]

=
1

|B|

N∑
i=1

E
[
|B|
N
∇f(sn, xi, εi) | sn

]

=
1

N

N∑
i=1

E [∇f(sn, xi, εi) | sn]

Since f is a smooth function and the expectation is on a Gaussian distribution, the expectation can
be interchanged with the gradient. We thus get:

E[∇L̂(sn) | sn] =
1

N

N∑
i=1

∇E [f(sn, xi, εi) | sn] = h(s)
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Hence E[en|sn] = 0. We now want to bound the conditional variance of en. Let us first deal with the
mini-batch. After some tedious computations, we find that the variance of the mean of a mini-batch
of variables X1, ..., XN can be expressed as

Var

(
1

|B|
∑
i∈B

Xi

)
=

1

|B|N

(
N∑
i=1

E[X2
i ]− |B| − 1

N − 1
E[Xi]

2

)
− N − |B|
|B|(N − 1)

E

[
1

N

N∑
i=1

Xi

]2
Although we don’t include the full computation, a suspicious reader could use a sanity check. One can

easily verify that, for i.i.d. variables, this formula leads to Var
(

1
|B|
∑
i∈B Xi

)
= 1
|B|Var(X1), which is

the correct result. We led other (no less tedious) computations on this variance expression to compute
its derivative in |B|. We find that the variance decreases with the batch size, which is coherent. Finally,

it comes that the variance when the batch size is one is bounded by
∑N
i=1 Var(Xi). Therefore, if the

variance of each sample is finite, the variance of the mini-batch is finite.

We now need to bound the individual variance terms ∇f(sn, xi, εi). The proofs of propositions 2
and 4 can be easily adapted into bounds for their empirical equivalent: the growth function of f and
∇f can be bounded by some power of ‖sn‖ . ‖xi‖ . ‖εi‖. Hence, since ε is Gaussian, ∇f(sn, xi, εi) is
bounded by some power of ‖sn‖ . ‖xi‖, which is finite.

Lemma 2. Assume that
∑
n γ

2
n < +∞. Then

∑∞
n=0 E[X2

n+1 | Fn] <∞ with probability one.

Proof. We recall that Sn =
∑n
t=1Xt is a martingale, with Xt = γtet1V (st−1)≤M . We have further:

n∑
t=1

E[‖Xt‖2 | Ft−1] =

n∑
t=1

γ2t 1V (st−1)≤ME[‖et‖2 | Ft−1]

=

n∑
t=1

γ2t 1V (st−1)≤ME
[∥∥∥∇L̂(st)−∇L(st)

∥∥∥2 | Ft−1

]
Since L̂ and L have a gradient with asymptotically polynomial gradient, at a given M there exists U
such that

V (s) ≤M =⇒ ‖s‖ ≤ U

Now we can use the bound from proposition 4 (which easily extends to L̂). When V (s) ≤M we get:

∥∥∥∇L̂(st)−∇L(st)
∥∥∥2 ≤ (1 + ‖θt‖)8L(1 + ‖ϕt‖)8L

(
N∑
i=1

(1 + ‖xi‖)5(Eε
[
(1 + ‖ε1‖)3

]
+ (1 + ‖ε1‖)3)

)2

≤ C ‖st‖16
(

N∑
i=1

...

)2

≤ CU16

(
N∑
i=1

...

)2

The sum is finite and only depends on ε and x. We finally get a bound which is uniform in s. This
gives for Sn:

n∑
t=1

E[‖Xt‖2 | Ft−1] ≤
n∑
t=1

γ2t 1V (st−1)≤MCU
16E

( N∑
i=1

...

)2
 < +∞

because the sum
∑
t γ

2
t is finite.

Proposition 5. Suppose that qϕ(z | x) is drawn from gϕ(x, ε) with ε ∼ N<R(0, I) a truncated normal.
Suppose moreover that the activation function σact is (finitely) piecewise polynomial. Then, in every
direction, the L2 penalized VAE objective has no critical point beyond a certain distance (dependent
on the direction) to the origin.
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Proof. The penalized objective is K(s) = −L(s)+λ ‖s‖2 with the summary variable s = (θ, ϕ). A crit-
ical point thus verifies ∇L(s) = λs. All we need to prove is that this equality can not happen beyond
a certain point. The intuition is that, since the ELBO is positive and has a behavior somewhat similar
to that of a polynomial, it will either decrease or stay constant at infinity. Let us first consider a fixed
s = (θ, ϕ) with norm 1. We want to prove that there exists Ts such that t > Ts =⇒ ∇L(ts) 6= λts.

It follows from the course of François Malgouyres [21] that the output of a neural network as a
function of the parameters is piecewise polynomial with a finite number of pieces. The pieces are
determined by a set of polynomial inequalities linking θ and ε or ϕ and ε. We now refer the reader to
the step 1 in the proof of proposition 4, where we computed separately the gradients of all components
in the ELBO. Bearing in mind the the structure of the neural network functions, we see that each
term we get is written under what we will call a piecewise square-root-rational function: that is to
say, a function that is piecewise a quotient of functions which are expressed as sum of powers and
square roots of polynomials. We thus define mt(s, ε) the current piece where the considered point
(ts, ε) currently lies. We can now express the fact that, for each (ε, s), the point (ts, ε) ends in an
area where all polynomial have constant sign: it is equivalent to say that there exist m(s, ε) such that
mt(s, ε) −−−−→

t→+∞
m(s, ε).

Square-root-polynomials have a simple asymptotic behavior when t → ∞: each polynomial term
has a dominant monomial. The square root divides the power of a dominant monomial by two, and
the quotient is equivalent to the quotient of dominating powers. On a given piece m, the resulting final
quotient Fm thus is equivalent to thmQm(ε, θ, ϕ) on piece Am, where Qm is a continuous function (note
that the exponents hm may depend on s, which is fixed here). If necessary, the M pieces can be further
split into smaller pieces, over which the dominating coefficient Qm(ε, θ, ϕ) is not zero. This argument,
whose relevance may not appear clearly here, is detailed on an example in remark 9. Over these pieces,
Qm is a continuous function of (θ, ϕ). The remainder can be written as thm−1/2Rm(t, θ, ϕ, ε) with Rm
a continuous bounded function. Therefore one can write:

∇L(ts) =

∫
B(0,R)

M∑
i=1

1m=mt(s,ε)F
m(ts, ε)dP (ε)

=

M∑
i=1

∫
B(0,R)

1m=m(s,ε)F
m(ts, ε) + (1m=mt(s,ε) − 1m=m(s,ε))F

m(ts, ε)dP (ε)

=

M∑
i=1

thm
∫
B(0,R)

Qm(ε, θ, ϕ)1m=m(s,ε)dP (ε) + thm−1/2
∫
B(0,R)

Rm(t, ε, θ, ϕ)1m=m(s,ε)dP (ε)

+ thm
∫
B(0,R)

Qm(ε, θ, ϕ)(1m=mt(s,ε) − 1m=m(s,ε))dP (ε)

+ thm−1/2
∫
B(0,R)

Rm(t, ε, θ, ϕ)(1m=mt(s,ε) − 1m=m(s,ε))dP (ε)

The last equation gives term by term:

• Im(s) =
∫
B(0,R)

Qm(ε, θ, ϕ)1m=m(s,ε)dP (ε): this integral only depends on s.

•
∫
B(0,R)

Rm(t, ε, θ, ϕ)1m=m(s,ε)dP (ε): this integral is bounded uniformly in t.

•
∫
B(0,R)

Qm(ε, θ, ϕ)(1m=mt(s,ε) − 1m=m(s,ε))dP (ε): the dominated convergence theorem grants

that this integral converges to zero when t→∞.x

•
∫
B(0,R)

Rm(t, ε, θ, ϕ)(1m=mt(s,ε) − 1m=m(s,ε))dP (ε): similarly, this integral converges to zero.
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We can thus regroup the three last terms into a function thmgm(t, s) such that gm(t, s) → 0 when
t→ +∞. This writes:

∇L(ts) =

M∑
m=1

thm(Im(s) + gm(t, s))

And, when t→ +∞, only the terms with the highest hm and non zero Im(s) dominate. Notice that if
all Im(s) are null then by definition Fm converges to a constant. In particular, there exists an overall
coefficient h, a continuous function I(s) and a continuous function g(t, s) such that g(t, s) = O(1/

√
t)

when t→∞ and:
〈∇L(ts), s〉 = th(〈I(s), s〉+ g(t, s)) ∼ th〈I(s), s〉

If h ≤ 0, the ELBO’s gradient does not grow at infinity, and cannot be equal to λts. If h > 0, three
cases arise:

• 〈I(s), s〉 > 0: in this case, the theorems on equivalents of divergent series and integrals grant
that

L(st)− L =

∫ t

0

〈∇L(st), s〉dt ∼
∫ t

0

th〈I(s), s〉dt→ +∞

But we know on the other hand that L(s) is upper bounded (a consequence of the hypothesis
Σθ � εI), which is contradictory. Hence this first case does not happen.

• 〈I(s), s〉 = 0: since I(s) 6= 0, we get at infinity that 〈∇L(ts), s〉/
∥∥thI(s)

∥∥→ 0. Since
∥∥thI(s)

∥∥ ≤
‖∇L(ts)‖, this gives 〈∇L(ts), s〉/ ‖∇L(ts)‖ → 0. Therefore the equality is never achieved in the
Cauchy-Schwartz inequality, hence the vectors ∇L(ts) and s are not positively colinear, and we
cannot have ∇L(ts) = λts.

• 〈I(s), s〉 < 0: in this situation, we have when t → +∞ that 〈∇L(ts), s〉 < 0. Thus we cannot
have ∇L(ts) = λts (otherwise the inner product would be positive).

We have just proved that, in a fixed direction s (‖s‖ = 1), there exist a threshold T (s) such that
t ≥ T (s) =⇒ ∇L(ts) 6= λts. It remains to be seen wether T can be bounded on the unit ball. The
main problem is that, despite Qm and Rm being continuous, we have no information as of wether I(s)
and g(t, s) are continuous.

Remark 9. In this remark, we use an example to justify the continuity of Qm and Rm as well as the
need to split the domains depending on the dominant degree. A rigorous proof would be tedious for
the general case, but the idea is simple. If P denotes any component-wise polynomial function, the
functions Fm we consider are (at most) of the form P (P (s) +

√
P (s)ε, s)/P (P (s) +

√
P (s)ε, s). For

example, imagine we have the following function on a given piece:

F (t(θ, ϕ), ε) =
t4θ31θ2 + tθ1(tϕ1 + ε

√
tϕ1 + t3ϕ3

2)2

tθ1 + t2θ22 + t2θ22(tϕ1 + ε
√
t2ϕ1ϕ2 + tϕ2)

The dominant term is easy to extract:

F (t(θ, ϕ), ε) =
t4

t3
θ31θ2 + θ1(1/t3/2ϕ1 + ε

√
ϕ1/t2 + ϕ3

2)2

θ1/t2 + θ22/t+ θ22(ϕ1 + ε
√
ϕ1ϕ2 + ϕ2/t)

We will thus use Q(ε, θ, ϕ) =
θ31θ2+θ1ϕ

3
2

θ22+(ϕ1+ε
√
ϕ1ϕ2)

. With this notation, we have:

F (t(θ, ϕ), ε) = tQ(ε, θ, ϕ) +R(t, ε, θ, ϕ)

Where R is the remainder term. The functions Q and R are clearly continuous. And, with rational
fractions, the remainder is an order of magnitude lower than the dominant term. Here with the
introduction of a square root, the order of magnitude becomes half an order of magnitude: we can not
a priori say better than R = O(t1−1/2) = O(

√
t).
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