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ABSTRACT
Understanding the variability in a graph data set has been an important
research topic in network analysis over the last years, and remains
a challenging open problem. These data sets are often difficult to
analyze, and one aims at highlighting interpretable common patterns
and sample-specific variabilities. In this paper, we characterize graphs
as the sum of a sparse low-rank common template and sparse low-rank
deviations from it. This structure allows to account for real-world
network properties: their adjacency matrices are sparse, and a low-
rank reflects their organization into clusters as well as the role of core
nodes. We propose a variational approach to estimate the template and
the deviations based on combined sparse and low-rank regularizers.
We demonstrate the performance of our decomposition model on both
simulated and real data sets. For example, analyzing air traffic data,
we show that sparsity and low rank lead to interpretable results on the
structure of airline traffic.

Index Terms— Network modeling, Sparsity, Low rank, Modu-
larity, Non-parametric modeling

1. INTRODUCTION

Network science and graph theory are at the core of a wide range of
applications. When dealing with a data set of networks defined on the
same set of nodes, understanding the variability among samples is a
crucial issue. In neuroscience, the connections between well-defined
brain regions are studied on groups of subjects to better understand
the human brain’s anatomy and function [1]. Computational social
science also requires to analyze the evolution of interactions in a fixed
population [2]. In this setup, it is interesting to work directly on the
networks’ adjacency matrices. Yet, to our knowledge, comparing
such matrices remains a difficult problem. Kernel methods can be
employed to evaluate distances between networks [3], but many theo-
retically interesting graph kernels require solving NP-hard problems.
Other metrics like the cut norm are used in graph theory, but cannot
be computed exactly in polynomial time [4]. Consequently, statistical
modeling for networks has so far focused on parametric models like
Exponential Random Graph Models [5], which take stock on a small
set of graph features to characterize a data set’s variability.

Non-parametric modeling for multiple networks has only recently
started to draw some attention in the literature. The authors of [6]
represent networks having a common set of nodes as samples from
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an extended graphon model. However, this model does not account
for classical properties of real-world networks like edge sparsity and
low rank [7]. On the other hand, much work has been devoted to
extracting denoised estimates from matrices with an underlying sparse
or low-rank structure [8, 9, 10, 11], but these techniques have not
been used yet in a statistical framework for graph data sets modeling.
The issue we wish to address can be formulated as follows: how can
the variability of graph data sets be accounted for in a non-parametric
way, while providing interpretable patterns either shared by the whole
dataset or specific to each graph? For example, given an airline
network, can we identify the baseline traffic and how daily traffic
fluctuations are structured ?

In this paper, we model the adjacency matrices of weighted net-
works sharing a common set of nodes as additive deviations from a
template network representing the reference interactions. These tem-
plate and deviations both have a sparse low-rank structure corrupted
by a sparse noise. We estimate this decomposition using variational
matrix recovery techniques. We show that taking advantage of the
networks’ common structure allows to efficiently estimate the uncor-
rupted data and recover the template patterns as well as the deviations.
Finally, we show how this decomposition operates on real data sets.

2. RELATED WORK

The recovery of low-rank patterns has been widely addressed in the
literature, in various application domains [12, 13, 14]. Many of them
rely on singular value analysis and the use of the nuclear norm, and
consider sparse noise [8, 10, 11]. More recently, efforts have been
made to denoise matrices with both low-rank and sparse structure.
Authors in [9] reconstruct such matrices by combining the nuclear and
`1 penalties. The same idea is used by [15] to reconstruct covariance
matrices, with additional theoretical guarantees on the convergence
rate. All these methods focus on one single matrix at a time.

When it comes to averaging networks or adjacency matrices,
little has been done in the literature so far. Kernel methods allow to
compute the mean of several graphs, but the result is not always a
graph itself. Stochastic block-models divide the nodes of a graph into
a fixed, known number K of clusters with simple interactions [16].
This amounts to approximating the network by a block-wise constant
adjacency matrix with rank less than K. The recent work of [6]
allows to handle multiple adjacency matrices in a single mathematical
object. The authors propose a multi-graphon model which represents
networks as one-dimensional latent codes, but does not account for
edge sparsity nor low rank. However, aggregating adjacency matrices
seems an important step toward developing a coherent complete
statistical framework for graph data sets analysis, and is at the core
of the model we propose.



3. MODEL SETUP

We denote by ‖·‖F , ‖·‖1 and ‖·‖∗ respectively the Frobenius, the
`1 and the nuclear norm (sum of singular values) over the set of
adjacency matrices with a given number of nodes m.

We are interested in data sets of weighted, possibly non-
symmetric adjacency matrices A1, ..., An ∈ Rm×m+ . We model
each Ai as deriving from a common template matrix T . In the
example of the airline network in the introduction, T can be the
typical daily traffic load and Ai − T the daily traffic difference
due to sample-specific circumstances and random fluctuations. The
difference between Ai and T is decomposed into a deviation Vi with
simple structure and a residual noise εi. This decomposition writes:

Ai = T + Vi + εi . (1)

The template T is assumed to be sparse and have a low-rank
structure. Although the network’s perturbation Vi is not an adjacency
matrix in itself, we also propose to consider it sparse and low-rank. A
low-rank structure is the simplest way to account for global changes
in the behavior of groups of individuals. For instance, if a matrix Ai
differs from the template only in the connections of one given node
with its neighbors, the resulting deviation has rank 2. Similarly, an
identical change in a group of nodes translates into a very low rank
term. Finally, since Ai is sparse the noise εi is also sparse.

We want to simultaneously remove the noise and separate the
template from the deviations. To that end, we propose a variational
formulation for the decomposition of Eq. (1). Our approach follows
the idea of [9]. In order to denoise an adjacency matrixA, the authors
in [9] solve a convex optimization problem to estimate an underlying
sparse and low-rank ground truth:

S ∈ argmin
S

{
`(S,A) + λ ‖S‖∗ + ρ ‖S‖1

}
,

where ` is a convex loss. This formulation takes stock on both
the sparsity-inducing property of the `1 penalization and the nuclear
norm regularizer, often considered as the convex relaxation of the
matrix rank [17]. [9] showed that using both penalties simultaneously
improves the matrix recovery in terms of support and Root Mean
Square Error (RMSE). Later, a better penalty was proposed by [18] to
account for both the sparsity and low rank in a single regularizer, but
the related estimation procedure turns out to be very computationally
demanding, which led us to keep to the method of [9].

As a generalization of this previous framework, we propose to
estimate the template T and the deviations V = (Vi)

n
i=1 by solving

the following convex optimization problem:
(T, V ) ∈ argmin

T,V1,...,Vn

{λ ‖T‖∗ + ρ ‖T‖1

+
∑n
i=1 `(Ai, T + Vi) + µ ‖Vi‖∗ + ν ‖Vi‖1

}
.

As the noise ε = (εi)
n
i=1 in our model is sparse, we use the `1

loss as a natural candidate for `. This choice has proven useful to
denoise adjacency matrices [11]. Notice that taking µ = ν = +∞
amounts enforces V = 0, grouping εi and Vi in a single sparse term.

4. ALGORITHM

We propose an algorithm to solve the above optimization problem.
The objective function is non-differentiable, hence gradient descent
methods can not be employed. The standard way to deal with this
problem is to use proximal methods [19]. Given a non-differentiable,
yet simple convex function g(x) and a parameter τ > 0, the proximal
operator of g is given by:

proxτg(x) = argmin
z
{‖x− z‖2F /2 + τg(z)} .

The objective function is the sum of simple functions whose prox-
imal operators are known. The Douglas-Rachford (DR) algorithm
[20] can be adapted to our purpose as follows. We introduce duplicate
variables T∗, T1, V∗, V1 (for the regularizers) and Y (for the ` term)
and add corresponding equality constraints. The loss becomes:

L(T∗, T1, V∗, V1, Y ) = λ ‖T∗‖∗ + ρ ‖T1‖1 + χ{T∗=T1}
+
∑n
i=1 ‖Yi −Ai‖1 + µ ‖V∗,i‖∗ + ν ‖Vi,1‖1

+
∑n
i=1 χ{V∗,i=V1,i} + χ{V∗,i+T∗=Yi}

where χE denotes the characteristic function of the set E,
which takes value 0 over E and +∞ elsewhere. Let X =
(T∗, T1, V∗, V1, Y ), the full loss thus writes

L(X) = f(X) + χ(T1,V1,Y )=P (T∗,V∗) ,
with P a linear operator summarizing the constraints and
f(X) = f1(T∗) + f2(T1) + f3(V∗) + f4(V1) + f5(Y ) ,

where each fi has known proximal operator.
We have proxτf (X) = (proxτf1(T∗), ..., proxτf5(Y )) from

the definition of f . Furthermore, each proxτfi derives from the
following [19]:
• `1 norm. Let STτ (X) = sgn(X)� (X − τ)+ the soft thresh-

olding operator. Then the proximal operator for the `1 norm is given
by proxτ‖·‖1(X) = STτ (X). Consequently, proxτ‖·−A‖1(X) =

STτ (X −A) +A.
• Nuclear norm. Given a matrix X , let X = UDiag(λ)V T be

the singular value decomposition ofX . Then we have proxτ‖·‖∗(X) =

UDiag(STτ (λ))V T .
The proximal operator of the indicator functionχ(T1,V1,Y )=P (T∗,V∗)

is the linear projection onto the linear subspace of constraints
C = {X | (T1, V1, Y ) = P (T∗, V∗)}. This projection can be
computed explicitly:

Proposition ([21], proposition 42). Let P be a linear operator. The
projection of (x, y) onto the set {(x, y) | y = Px} is given by (x̃, ỹ),
with x̃ = (I + PTP )−1(PT y + x), ỹ = P x̃.

For x ∈ {V∗, V1, Y }, let x̄ = 2
2n+6

∑
i xi. In our optimization

problem, this projection writes:{
T̃∗ = 3

2n+6
(T∗ + T1) + V̄1 − V̄∗ − Ȳ

Ṽ∗,i = − 1
2n+6

(T∗ + T1)− 1
3
V̄1 + 1

6
V̄∗ + 1

6
Ȳ + 1

3
(V∗,i + V1,i + Yi) ,

And T̃1 = T̃∗, Ṽ1,i = Ṽ∗,i, Ỹi = Ṽ∗,i + T̃∗. The complete
scheme is detailed in Algorithm 1. It only requires choosing parame-
ters θ for the total step size and τ for the proximal step size. Unless
specified, the algorithm is run for 200 iterations for every experiment
in this paper, with θ = 0.9 and τ = 0.1. Stability of the results
was such that there was no need to adapt to each dataset. The algo-
rithm described in this section as well as reproducible code for all the
numerical experiments in this paper are available online.1

5. EXPERIMENTS ON SIMULATED DATA

5.1. A visual example
In order to get a first grasp on the decomposition’s action on graph
data sets, we first study a synthetic case of a population with 100
nodes split into five communities sparsely interacting with each other.
We construct a binary template T describing five fully connected
communities with random sizes, and no interactions between com-
munities. In n = 10 occurrences, all nodes between two random
indices interact with nodes between two other random indices, form-
ing an additional block of interactions Vi. Finally, we randomly

1https://github.com/cmantoux/sparse-low-rank-decomposition



Algorithm 1: DR splitting for the SPLR decomposition

Initialize X0 with T∗ = T1 = 1
n

∑
iAi,

V∗,i = V1,i = Ai − T∗, Yi = Ai
repeat

Z0
t+1 = 2Xt − ProjC(Xt)

Z1
t+1 = 2Z0

t+1 − proxτf (Z0
t+1)

Xt+1 = (1− θ)Xt + θZ1
t+1

until convergence
return ProjC(Xt)

flip 20% of the edges and get directed adjacency matrices Ai. The
matrices (A1, T, V1) are shown in figure 1. We wish to identify the
communities and the additional interactions Vi.

We apply our Sparse Low Rank Decomposition (SPLRD) algo-
rithm on these 10 matrices (Ai), tuning the parameters (λ, ρ, µ, ν) us-
ing the forest_minimize optimizer from the scikit-optimize
library [22]. We select the tuple minimizing the RMSE for the devia-
tions Vi, which naturally encourages a good estimation for T (as Vi
is estimated from Ai − T ). We use θ = 0.1 and run the algorithm
for 400 iterations because of the strong noise amplitude. The results
are shown in Figure 1. The template is recovered accurately despite
the small number of samples (n = 10). Most of the noise has been
removed from the variation Vi, even though the estimation is less
accurate than that of T . This is coherent since the template benefits
from multiple samples, while the deviations are individual and the
noise considered is strong. This result further highlights the interest
of splitting the difference to the template into a low-rank term and
noise: if both were regrouped in a single sparse term, the Vi’s in this
example could not be recovered. Up to a 0.1 threshold, 100% of the
support is correctly recovered for T and 90% for V .

5.2. More complex simulated data
Experimental setup We now consider more general random sam-
ples. We generate non-symmetric sparse low-rank matrices T and Vi
of the form UUT , with U a sparse rectangular Gaussian matrix with
full rank, and thus obtain a data set of matrices Ai = T + Vi + εi.
The ranks of T and the Vi’s, and the sparsity level in T , V and ε can
be chosen freely. Here we use n = 10 samples, m = 100 nodes,
rk(T ) = rk(Vi) = 10, and 70% sparsity in T and the Vi’s. The
results we present stay stable when changing these settings. With the
chosen values of rank and sparsity, non-zero coefficients in T and
V have standard deviation close to 1. The noise εi also has sparsity
70%, and its non-zero coefficients follow a Gaussian distribution with
standard deviation 1. In a second experiment, we simulate matrices
that may represent actual weighted undirected networks. To that end
we perform the same experiment, except now we impose that T and
V have non-negative, symmetric coefficients. The noise ε is drawn
from a symmetric sparse Gaussian distribution ε0 thresholded to get
non-negative final coefficients: ε = max(ε0,−T − V ).

We select (λ, ρ, µ, ν) with the forest_optimize function of
the scikit-optimize library with default arguments, and select
the tuple with smallest RMSE for V . This metric is optimized on 5
random data sets and evaluated on 5 other random data sets drawn
from the same distribution (n = 10 samples, m = 100 nodes).

Model evaluation For both data sets, we compute the relative
RMSE for the estimation of T and V . In order to highlight the benefit
of the joint estimation of T and V , we use the original method from
[9] with the `1 loss to perform a sparse low-rank estimation on the
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Fig. 1: Results for a simulated example with simple cluster structure.

empirical mean of the adjacency matrices M = 1
n

∑
iAi. We select

the parameters on the training data set with scikit-optimize as
for our model. This gives us an estimate TM of T . We then apply the
same method to Ai − TM with parameter selection on the training
data set, and thus get an estimate VM of V . Finally, we estimate the
decomposition Ai = TS + εSi in the sparse-only case µ = ν = +∞.
These results, as well as the naive decomposition Ai = M + (Ai −
M), are compared to our SPLRD solution (TD, V D).

In order to evaluate the network structure estimation capacity of
the models, we also compare the relative RMSE of several standard
graph features for the symmetric non-negative matrices. We com-
pute the average weighted node degree d, the average shortest path
length L and the clustering coefficient C. The average shortest path
length L is computed using a decreasing function of the edge weights
cost(w) = 1/(w + α) (α = 0.1), accounting for the cases where
these weights represent a connection intensity rather than a cost. The
weighted clustering coefficient C is defined following [23].

Results The numerical results are shown in Table 1. In both
cases, our decomposition method greatly improves the estimation
of the template compared to the denoised mean TM . The recovery
of T is achieved very accurately with a small number of samples
(n = 10). Consequently, the estimator V D also improves on VM ,
which is only natural since the estimation of each VMi is based on a
biased matrix Ai − TM . It can be noticed that, while the estimation
performance of the mean sample M and its denoised version TM

worsen when using non-negative coefficients, the performance of
the SPLR decomposition stays good. This results points out the
difference between the template TD and the average sample M ,
which in this case is a biased template estimator. The results on graph
features also show that the SPLR decomposition estimates the initial
samples in a way that is consistent with a graph structure. This is
not surprising for the average degree which depends linearly from
the adjacency matrix, but the average shortest path length and the
clustering coefficient estimations are also improved with respect to
the noisy samples.

6. EXPERIMENTS ON REAL DATA

6.1. Airplane traffic network
We use a data set of networks from [24] listing US domestic airplane
flights every hour for 10 days. We sum the total flight count per day
to average day/night variability and get n = 10 directed weighted
adjacency matrices. The obtained networks have m = 299 nodes
corresponding to airports. The matrices have 95% null coefficients
and rank at most 123, with very rapidly decaying singular values. We
apply the SPLR decomposition with (λ, ρ, µ, ν) = (10, 0.2, 5, 0.2),
which allows to observe an interesting result while staying close to



Table 1: Mean and standard deviation of the relative RMSE. For
matrices with unconstrained signs we show the error for T and V ,
and for symmetric non-negative coefficients (Sym+) the error for T ,
V and the graph features (GF) presented in the text.

(TD, V Di ) (TM , VMi ) (TS , εSi ) Naïve

Any T .04± .01 .42± .08 .07± .01 .55± .10
sign V .33± .02 .49± .02 .85± .02 .91± .05

Sym+ T .07± .02 .55± .22 .08± .03 .64± .27
V .30± .01 .55± .02 .66± .03 .77± .03

GF d .01± .01 .09± .04 .27± .09 .27± .09
L .15± .07 .29± .08 .49± .07 .49± .07
C .03± .01 .35± .03 .09± .02 .09± .02

the data (10% relative RMSE between the A′is and the T + Vi’s
accounting for the noise removed). There is no definite rule to select
these parameters, as often with variational methods. We choose the
parameters which allows to observe low-rank patterns while keeping
the decomposition T + Vi close to Ai.

The estimated template has rank 112 and sparsity 96%. The devi-
ations have rank below 85 and average sparsity 96%. In comparison,
the samples have rank at least 110, with the mean sample having
rank 123. The template and the first three deviations are shown in
Figure 2. The cities are ordered according to an algorithmically de-
tected core/periphery structure [25], grouping the core nodes and the
periphery nodes separately.

The recovered template T contains the regular traffic; it is high
between the core airline hubs, weak between the core and the periph-
ery and almost null between nodes from the periphery. The deviations
Vi’s account for the fluctuations in the flights planning, as well as
events affecting airports. In Figure 2, V1 is mainly constituted of
fluctuations in the core and the impact of a few core cities onto the
periphery nodes. This impact directly translates into a low-rank per-
turbation: the strongest pattern in V1 is a reduced activity for New
York’s western airport (10th core node) maybe linked to a snow storm
in New Jersey that day, resulting in a rank 2 perturbation. Two sym-
metric bright spots indicate an unusually high traffic between Denver
and New York’s eastern airport, due to the Denver football team tak-
ing part to the 2013 SuperBowl finals in New York that day. Similar
observations can be made on the structure of V2 and V3.

6.2. Functional brain networks
We consider a data set of human brains analyzed with functional
Magnetic Resonance Imaging in [26]. The nodes represent brain
regions and the connections the temporal correlations between their
activity signals. The study considers n = 49 subjects with m =
312 brain regions. Each subject is recorded during a resting period
and while performing a listening task. For more details on the data
processing, we refer the reader to [26]. The correlation matrices in
the data set are not sparse but have very low rank, with only one
or two leading singular values. Our decomposition model can be
employed using ρ = ν = 0 and turn into a low rank template +
low rank deviation estimation method. Setting λ = 50, µ = 5, we
run the algorithm first separately on the 49 resting state and the 49
active listening matrices, then together on the 98 matrices. The three
decompositions approximate the samples with relative RMSE at most
3.9%. The results are shown in Figure 3.
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Fig. 2: Decomposition result for US flights data set. This figure shows
the full template T and the full deviation V1 (top), and a zoom on core
cities for T, V1, V2 and V3 (bottom). In the interests of readability,
color scales differ across figures.

The templates T rest and T task have relatively low rank (resp. 70
and 166), whereas the template T full has rank 284 out of 312, showing
that our model is more relevant for each separate task than for the
global data set. Over all three models, the deviation ranks range
between 54 and 97. Moreover, the `2 distance between T task and
T full is 37% larger than that between T rest and T full. It indicates that
the best template for the whole data set is closer to the resting state
brain. This observation can be linked with the results on simulated
data with non-negative deviations Vi: the decomposition identifies
a template that best fits the T + Vi model rather than the average
sample. The templates provide a sharper perspective than the means
for which region’s activity changes when performing a task.

7. CONCLUSION

We have presented a new method to decompose data sets of matrices
into a sparse low-rank template, sparse low-rank deviations and noise.
This model relies on observable properties of real-world adjacency
matrices. We have proposed a procedure to fit this model by optimiz-
ing a convex loss function. This algorithm has proven very efficient
to estimate the underlying template from a small number of samples,
recovering the deviations with acceptable accuracy. We proved that
this model is relevant to handle graph data sets and showed that the
algorithm is able to recover graph features from noisy simulated data.
This decomposition is suited to real networks like airplane flights and
gives a meaningful interpretation for their variability.
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